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CHAPTER ONE 

INTRODUCTION AND LITERATURE REVIEW 

Introduction 

The solid-state ternary chalcogenide halide chemistry of tantalum has been 

receiving spotty attention in the literature for about 25 years, since the first compound to 

contain both tantalum-chalcogen and tantalum-halogen bonds simultaneously was reported 

in 1972. This compound, formulated as "TaSCb-PhNCCU", was obtained by refluxing a 

hexane solution of a sulfiir-containing adduct of TaCls."' The first reported pure ternary 

tantalum chalcogenide halide was TaSCb, obtained in 1975 by reaction of SbaSs with 

TaCls at 120°C.'^' In the intervening quarter century, however, the number of well-

characterized tantalum chalcogenide halides has grown exceedingly slowly. A current 

literature survey shows a total of only eleven such compounds, of which only five have 

been acceptably structurally characterized. Furthermore, these five compounds are all 

structurally very similar, and can be classed together as members of a family, abbreviated 

to Ta(Q4)nXy (Q = Se, Te; X = Br, I). These will be discussed in more detail below. 

Clearly, exploratory synthetic chemistry of tantalum has lagged far behind that of its 

lighter relative niobium, whose binary halide and ternary chalcogenide halide chemistry 

features a multitude of compounds. NbTe4l,^' Nb2Se2Br6,'*' NbsClg,'^^ NbSel,'®"'^ 

Nb6Sl9,^®' display remarkable structural diversity, adopting structures with isolated 

niobium atoms, Nb-Nb dimers, Nba triangular clusters, Nb4 tetrahedral clusters, and Nbe 

octahedral clusters, respectively. Additionally, centered Nbe trigonal prismatic clusters in 

the case of the rubidium salt RbsNbeSBri?,'®' and tetranuclear butterfly clusters in the 

cesium salt CsNb4Clii have been characterized.'^°' 

Owing to the lack of negative results published in the literature, it's uncertain if 

this lack of representation is due to the reluctance of tantalum to engage in chemistry as 

rich and diverse as that of niobium, or is simply due to a lack of any vigorous synthetic 
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study. Indications from the research presented in the following thesis suggest the latter is 

probably true. 

As is well known, congeneric second and third row transition metals are almost 

identical in size because of the lanthanide contraction, and frequently behave chemically as 

duplicates of the other. Nevertheless they diverge most baflOingly in some cases. In 

particular, tantalum has up to now refused to show as marked an affinity for clustering to 

varying degrees of nuclearity as has niobium. A discrepancy of central interest between 

the two elements is the existence of trinuclear niobium clusters in the binary halides NbsXg 

(X = CI, Br, I). NbsXg have been known for thirty years, are readily made and 

characterized, and are stable up to ca. 900°C. Contrarily, the tantalum analogs remain 

unknown. In fact, until the present work, only one trinuclear cluster of tantalum had been 

synthesized, the [Ta3Clio(PEt3)3]" anion of Cotton, et al., reported in 1988.''^' This green 

compound, crystallized as the [HPEts]* salt at room temperature, was accidentally 

discovered. Even here a discrepancy exists between the chemistries of niobium and 

tantalum. Similar niobium trinuclear cluster anions containing both six and eight electrons 

per Nbs cluster were prepared, demonstrating the robustness of the Mb species towards 

redox chemistry.''^' However, such a variable electron count was not observed with 

tantalum; only the six-electron compound could be isolated. No tetranuclear tantalum 

clusters are known, again differing from niobium. With the remarkable variety of cluster 

structures displayed by niobium, it is perhaps surprising that Ta has shown such limited 

halide cluster chemistry. 

The synthesis, characterization, and reactivity of TasQX? (Q = S, Se, Te; X = CI, 

Br, I), a new family of tantalum chalcogenide halide cluster compounds containing the first 

examples of tantalum trinuclear clusters obtained by high-temperature solid-state methods 

and some related compounds is the subject of this thesis. The intent of this thesis is to 

report several new examples of such tantalum chemistry, thereby expanding the known 

ternary solid-state cluster chemistry of tantalum both in size and in diversity, and to 

demonstrate the potential rewards of further tantalum chalcogenide halide exploration. 
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Literature review of tantalum halides and chalcogenide halides 

Relevant properties of tantalum metal 

Tantalum metal possesses several properties for which it is justly renowned, but 

which present challenges to the synthetic chemist hoping to engage the element in a 

reaction. As the pure element, tantalum metal is virtually inert to all acids, with the 

exception of a mixture of concentrated sulfuric, nitric, and hydrofluoric acids, where 

formation of the soluble TaF?^" anion drives dissolution. It will dissolve only very slowly 

in fiised alkali. At ambient temperatures tantalum is virtually impervious to attack. It 

owes this corrosion resistance to the formation of an especially tenacious passivating 

surface oxide layer. The creep of this layer into the interior of the metal is exceedingly 

slow, even at elevated temperatures.''^' A positive side to this is that even tantalum metal 

which has been exposed to air for long periods of time can remain relatively pure, 

protected by its oxide coating. The shallow surface layer can be conveniently removed by 

washing with the H2SO4/HNO3/HF solution described above. 

Table 1-1 gives values for seleaed thermodynamic properties of tantalum directly 

impacting the present work, and compares the same quantities for Nb, Zr, Hf, Mo, W, Tc 

and Re. A general trend in the transition metal series is that AHfia, AHvip, AHttom, Tn^it, 

and Tboti increase when descending a group, so the third row (5d) metals all have the 

highest values of these properties in their respective triads. Noteworthy is the large heat 

of atomization of Ta, which at 782 kJ/mol is the second highest in the periodic table, 

behind only tungsten metal (849 kJ/mol) in magnitude. The great deal of energy required 

to convert the bulk metal to a monatomic vapor is a consequence of the great strength of 

the metallic Ta-Ta bonds. Important here is the fact that AHv,p and AH,tooi of Ta are 

higher than the Nb values. This has been interpreted as a rationalization of the greater 

tendency shown by Ta to engage in metal-metal bonding compared to its lighter group 

member Nb, and has consequences for metal-rich and cluster compounds where both of 

these elements are present and competing for chemically dijfferent sites. For example, the 
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Table 1 -1. Some properties of the transition elements near tantalum/'^' 

Element MP BP AHfiB AHvap APImi]]i2atioa 
(°C) (°C) (kJ/mol) (kJ/mol) (kJ/mol) 

Zr 1857 4200 19.2 567 612 
Hf 2222 4450 25 571 611 

Nb 2468 4758 26.8 680.2 724 
Ta 2980 5534 24.7 758.2 782 

Mo 1620 4650 28 590 664 
W 3380 5500 35 824 849 

Tc 2200 4567 23.8 585 « 

Re 3180 5650 34 704 779 

mixed compound Ta3.2gNb1.72S2 forms a layered structure in which a five-sheet-thick metal 

layer consisting of Nb and Ta is sandwiched between layers of sulfur.'"' Instead of 

random occupation of the crystallographic metal sites, however, partial ordering occurs. 

Tantalum atoms are observed to congregate preferentially in the metal-rich interior of the 

M3S2 slabs, where metal-metal interactions are maximized. The sites on the exterior of 

these slabs, near the sulfur layers, are then occupied by mostly niobium. 

These physical properties of tantalum metal (high melting and boiling point, large 

heats of fusion and vaporization, reluctance to react), which reach a maximum in the 

region of the periodic table including Ta, W, and Re, reflect the metal-metal bond 

strengths, and have observable ramifications in the behavior of these elements with regard 

to cluster formation and stability. 

This great strength and chemical inertness have led to the use of tantalum metal in 

diverse industrial and commercial applications. The pure metal is used as a liner in the 

construction of chemical storage and processing equipment, as surface-exposed parts in 

nuclear reactors aircraft and missile components; medically its non-irritability and 

complete inertness to bodDy fluids make it ideal for use as artificial joints and as bone 
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replacement parts. It has also been used as a filament or filament support, and its 

insulating oxide film has been extensively exploited by the electronics industry in the 

manufacture of capacitors. On a smaller scale, tantalum is used as a container for high-

temperature chemical reactions, where unwanted involvement of the reaction container in 

the reaction is a troublesome issue. 

Useful physical properties aside, the great chemical resistance of tantalum make 

the pure metal problematic for synthetic chemistry. Clearly, the metal is quite unreactive 

to halogens and chalcogens at room temperatures. The task of converting the pure 

element into a chemical compound requires the action of oxidizing agents at high 

temperatures, and is greatly aided by chemical vapor transport reactions using temperature 

gradients. Chemical transport is essential for reactions to occur on a reasonable timescale 

(several days or weeks), and for the formation of pure products, distinctly separated fi^om 

unreacted Ta metal and nonvolatile binary compounds forming and remaining on the metal 

surface. 

Binary tantalum and niobium halides 

The family of compounds TasQX? (Q = S, Se, Te; X = CI, Br, I) that form the 

nucleus of this thesis are best considered chalcogen-substituted halides, and a brief review 

of tantalum halide chemistry is therefore in order. Also, because much of the importance 

of the aforementioned compounds is highlighted by comparison with niobium, because Ta 

and Nb halide chemistries are often so similar (but with puzzling dissimilarities), and finally 

because a large part of this thesis concerns mixed Ta / Nb compounds, the two elements 

will be discussed together, with a special focus on the cluster compounds NbaXg, 

forerunners of TasQX?. 

The known tantalum and niobium halides are gathered together in Table 1-2, 

grouped by formal metal oxidation state. There is a clear trend: Reduction of the metal 

center is accompanied by an increasing tendency toward metal cluster formation. In the 

+5 oxidation state, the metal centers are isolated fi-om each other; no metal-metal bonding 



www.manaraa.com

6 

Table 1-2. The known halides of niobium and tantalum. Structural features are 
discussed further in the text. 

Oxidation 
number 

Ta ref Nb ref Structural features 

TaCls 15 NbCl, 18 
+5 TaBrj 16 NbBrs 19 M2X10 molecules 

Tals X 
: 

17 Nbl5 20 

TaCL, 21 NbCL, 21 j [MX2X4^] chains 
+4 TaBr4 22 NbBr4 24 with M-M drniers 

Tal4 23 NbLt 25 

- a-NbsClg 5 Close-packed halide layers, 
+2.67 - a-, P-NbsBrg 11 Nbs clusters 

- P-Nbslg 11 

TaeClis 26 . 
+2.5 Ta^Bris 26 - [Ta6Xi2]^'^ clusters 

Tamils 27 -

. NbfiClH 30 
[MsXa]^"" clusters +2.33 TaeBrn 28 - [MsXa]^"" clusters 

TaJu 29 -

+1.33 - Nbglii 31 [Nbslg]^* clusters 

occurs. Reduction by one electron per metal causes formation of metal dlmers: the one 

electron is now occupied in a metal-metal bond. Further reduction (in the case of Nb 

only) results in trinuclear cluster formation. Even further reduction leads to hexanuclear 

clusters. Interestingly, the occurrence of seemingly non-integral oxidation states is 

peculiar to the second and third rows of group five only; vanadium is found only in the +2, 

+3, +4 and +5 states. 
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Pentahalides 

All pentahalides of Ta and Nb crystallize as MjXio molecular solids. In the gas 

phase, however, the chlorides and bromides are thought to exist as monomeric trigonal 

bipyramidal molecules.^^' No gas-phase information is known about the pentaiodides. 

The pentahalides are most easily made by direct halogenation of the metal, and can be 

purified by sublimation. The M2X10 units, shown in Figure 1-1, are edge-sharing 

bioctahedra, with the metal atoms displaced from the octahedron centers away from one 

another due to coulombic repulsion. Metal-metal distances are greater than 3.5 A for all 

halides. The M2X10 molecules condense so that the halide matrix is still nearly close-

packed. From this point of view, the solids can be described as nearly close-packed 

networks of halide, with the metal atoms in 1/5 of the octahedral sites. 

• Nb, Ta 

O F, CI, Br, I 

Figure 1-1. M2X10 units found in tantalum and niobium pentahalide solids. The repulsive 
interaction between +5 metal centers forces them away from one another and 
distorts the coordination environment. 

Tetrahalides 

Niobium and tantalum tetrahalides can all be made by reduction of the pentahalides 

by the corresponding metal itself, or with reducing agents like aluminum.Though there 

are slight differences in the extended three-dimensional structures adopted by the various 
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tetrahalides, in general all are characterized by edge-sharing distorted octahedra forming 

linear MX2X4/2 chains with alternating short-long metal-metal distances. Such a chain is 

illustrated in Figure 1-2. In NbCU, the Nb-Nb distances are 3.029 A and 3.794 A. The 

alternating bond length pattern is due to dimerization of the metals within the chains. The 

unpaired electron one might expect from a simple consideration of the +4 oxidation state 

of the metal (d' configuration) is instead involved in a metal-metal bond. Accordingly, the 

compounds are diamagnetic. The packing of the MX2X4/2 chains in the extended structure 

is also consistent with viewing the structures as close-packed networks of halide, with the 

metal ordered in 1/4 of the octahedral sites; see Figure 1-3. 

t 

\i2-X 

Compound M-M M-Xtenin., M-(h2'-X) M-Ciiz^-X) 

NbCU 3.029,3.794 

a-NbL, 3.309, 4.361 

2.291 

2.675 

2.425 

2.741 

2.523 

2.894 

Figure 1-2. The MX2X4/2 chains in tantalum and niobium tetrahalides. Various bond 
distances, where known, are also given (A). The superscripts / and a refer to 
the innen and aussen notation of SchMer and von Schnering. 
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(a) Extended structure of a-Nblj, showing the interstitial occupation of the close-
packed iodide layers by Nb dimers. 

(b) View perpendicular to the close-packed iodide layers, showing the distribution of 
occupied octahedral sites. Large grey circles represent the lower cp layer, large 
white circles the upper cp layer, and black circles the metal atoms. 

Figure 1-3. Structural views of a-NbLt. Other niobium and tantalum 
tetrahalides are similar. 
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At formal oxidation states below +4, the chemistries of the binary halides of 

niobium and tantalum begin to deviate from expected simple oxidation-number patterns, 

and to display unusual structural features and dissimilarities from each other, involving 

extensive metaJ clustering and non-integral oxidation states. 

Trihalides 

The older literature is replete with tantalizing mentions of lower halides, including 

"TaCb" •'NbClz" "TaBrj" "TaX^s" "TaCb" "TaBrs" and "Nblj"^^'. 

Their characterization was usually limited to elemental analysis and powder x-ray 

diffraction. The verity of these compounds is dubious at best; they are most likely 

misidentified hexanuclear cluster compounds. The phase thought to be "NbCb" was later 

proven to be Nb^Clu contaminated with niobium metal and niobium oxides.'^' Of all the 

various enigmatic lower halides, TaCligo and TaBrigs are the most thoroughly studied.^®' 

They are reported to be mixed-valent compounds containing Ta6Xi2'^ clusters and 

hexahalotantalate(V) ions. 

Lower oxidation states 

Metal-metal interactions dominate the structure and bonding of the more highly 

reduced Ta and Mb halides, and determine their stability. It is here in the lower oxidation-

state chemistries of tantalum and niobium that the most severe dissimilarities between the 

structural chemistries of the pair emerge. The first and most glaring chasm occurs with 

the binary halides NbsXg, having a formal oxidation state of +2.67. NbaXg exist only for 

niobium; remarkably, no such compounds have been reported for tantalum, whose 

reduced-oxidation state chemistry is dominated by octahedral clusters. (TasXg have been 

alluded to in the literature, but falsely.NbsXg can be prepared by reduction of the 

pentahalides with Nb, or by stoichiometric combination of the elements at ca. 800°C. 

Structurally, NbaXg are defect-Cdl2 compounds, comprised of close-packed layers 

of halide containing trinuclear Nba clusters between every other layer. Two modifications 
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of NbsXg, the hexagonal a form and the rhombohedral P form, are known, and are 

described in full below. 

While P-NbsBrg and p-NbsIg are apparently stoichiometric "line phase" compounds 

(no "P-NbaClg" has been reported), the a modifications a-NbsClg, a-NbsBrg, and a-Nbalg 

are rejxjrted to actually be part of a series of nonstoichiometric phases Nbs-xXg, with 

NbsXg representing the most reduced (end) member of this series.'"' To date there is no 

rationalization for why only the a form and not the P form of NbsXg exhibits non-

stoichiometry. For a-Nb^xBrg, x ^ 0.36, and for a-Nbs-xIg, 0.23 ^ x ^ 0.38. a-NbsClg is 

the best-characterized of these three. It shows a homogeneity range from fi-om Nb^jeClg 

to NbsClg (x ^ 0.44). The non-stoichiometry of a-NbsClg has been interpreted as the 

formation of a solid-solution of Nbs triangles and Nb2 dimers within the halide matrix,''*^' 

i.e., formation of a mixed (Nb3)i.x(Nb2)xClg crystal. Electronic structure calculations on 

this system have shown that as the concentration of Nbj duners is increased, the Nbs 

triangles are increasingly oxidized due to electron transfer to lower-lying Nb2 5* orbitals 

until, at some point, disproportionation into NbCU and a more reduced halide is 

favored.''*^' 

The reason for the continued absence of TasXg is not evident, but perhaps has to 

do with the greater M-M bonding tendencies of the heavier element, predisposing 

tantalum to clusters of nuclearity greater than three, in particular the highly stable 

octahedral clusters described next. 

Hexanuclear cluster compounds 

In the most reduced oxidation states exhibited in extended solids of tantalum and 

niobium, a series of octahedral cluster compounds based on quasi-infinite three-

dimensional linkages of or [MeXg]"^ clusters forms. The core of these structural 

units is an Me hexanuclear cluster, which either has perfect octahedral symmetry or is 

distended along a three-fold axis, depending on the symmetry of the solid. The halides 

coordinate the cluster eitlier by bridging all twelve cluster edges ([MeXn]"^, or by 
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capping all eight cluster faces ([MeXg]"^. Intercluster linkage is accomplished by halide 

bridges through the vacant cluster vertex sites. Representations of the two cluster types 

are given in Figure 1-4, and a diagram of how [M<$Xi2]^* units link up in a typical solid is 

shown in the structure picture of TaJu (Figure 1-5), a common by-product of many of the 

reactions discussed later in this thesis. For group five binary halides, the [MsXa]""" cluster 

type occurs only in NbJu. 

Review of temaiy tantalum chalcogenide halide chemistry 

Transition metal chalcogenide halides will be defined in this thesis as follows: a 

ternary compound between a transition metal, a chalcogen (S, Se, Te) and a halogen 

where distinct bonds between the metal and both the chalcogen and the halogen exist. 

Such a distinction has been made before,'"*^' and eliminates complex, mixed salts such as 

MoTesClie, better formulated as (TeCl303(MoCU^"XCl"), where the coordination sphere 

of the molybdenum atom consists of only chlorides; no Mo-Te bonds are present. Also 

eliminated are compounds consisting of chalcogen polycations and halometallates, like 

(Te4^''XWCU~), where again the only bonds to the metal are firom the halogen. Even after 

narrowing the definition in this way, transition metal chalcogenide halides as a class still 

offer astonishing structural diversity and a host of practically and impractically interesting 

chemical properties. Classical salt-like compounds are known, and so are novel low-

dimensional, strongly metal-metal bonded compounds. Some puzzling absences remain: 

the heavier members of groups three (La) and five (Mb, Ta) form numerous chalcogenide 

halides, but still none have been reported for Zr and Hf Tungsten forms several sulfide 

halides and selenide halides, but no tungsten telluride halide is known. Likewise with the 

prolific cluster compound-former molybdenum, though a substituted Chevrel phase is 

known in this system. 

Table 1-3 gathers together ionic radii and Pauling electronegativity values of the 

chalcogens and halogens. Oxygen and fluorine are included for comparison. An 

interesting and perhaps surprising fact is that the least electronegative halogen (iodine) is 
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(a) a-*- (b) [Nbslg]' 

(a) The [MeXn]"^ cluster unit found in the reduced binary tantalum and niobium halides 
NbeClu, Ta<sCli5, Ta6Bri4, Ta^Bris, TaJu and TaJu, in the mixed halides NbeCiizh 
and Nb6CIio.8Cl3.2, in ternary halides like ICtNbeCIis, and in numerous compounds 
like Ta<CU4*7H20 isolated from solution. 

(b) The [Nbelg]^^ cluster unit found only in NbJn and its derivatives. 

Figure 1-4. [MeXn]"* and [Nbelg]^" hexanuclear cluster units and their coordination 
environments found m reduced niobium and tantalum halides. 
In the three-dimensional solids, these cluster units link up by means of 
intercluster halide bridges between the vertex sites. 
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Figure 1-5. Structure diagram of TaJu ([Ta«Ii2]^'^(r)2). Tag clusters are shaded. The 
[TaJn]^"" units are linked together by iodide atoms (open circles) bridging 
four cluster vertices. 
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Table 1-3. Pauling electronegativities and ionic radii (Shannon and Prewitt of 
the chalcogens and halogens. 

Chalcogens Halogens 

Atom Electronegativity Ionic Radius Atom Electronegativity Ionic Radius 
(Pauling) (Q^-) CN=6 (Pauling) on CN=6 

0 3.44 1.40 F 3.98 1.33 
s 2.58 1.84 CI 3.16 I.8I 
Se 2.55 1.98 Br 2.96 1.96 
Te 2.10 2.21 I 2.66 2.20 

still more electronegative than the most electronegative chalcogen (sulfur). This is a 

crucial point in rationalizing site preferences in a structure. The systematic, evenly 

gradated variation of size and electronegativity parameters characteristic of this group of 

elements (S, Se, Te and CI, Br, 1) offers to the chalcogenide halide chemist many 

appealing synthetic options. The wide range of electronegativities (from 2.10 for Te to 

3.16 for CI) allows for interplay and opposition of covalency and ionicity. Systems 

containing similar elements (Se and Br for example) can be expected to behave quite 

differently from those containing polar opposites, like aTe/ClorS/I system. The range 

of ionic radii, especially halide radii, will be important in M3QX7 systems, whose anion 

matrix is predominantly halide. 

Theory has been used successfully to correlate these atomic parameters with 

observed structure, a forteriori. Structural preferences based on hard-core repulsions are 

seen - chlorides favor structures that minimize interaction of the hard CP anions, while 

compounds of the larger, more polarizable bromides or iodides are influenced primarily by 

the Madelung term.^'*^^ 

The stability of the compounds is limited to chalcogens and halogens of the third 

period and below; oxygen and fluorine are too electronegative to be compatible with these 

reduced systems. When oxygen is introduced, NT"" and oxyhalides are observed 

instead. 
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The chalcogens (and to a lesser extent halogens) are known to concatenate. The 

capacity to form either isolated monochalcogenides (Q^") or polychalcogenide linkages 

(Qn~) means that there are additional stable alternate compounds that might form. 

Although this is clearly more likely for chalcogen-rich systems, dumbbell Tej^" groups 

have been observed in Nb2Te2l6 and Nb2Se2Br6. 

As noted earlier, the tantalum chalcogenide halide compounds known until this 

work fall into two main classes, grouped together in Table 1-4: 

I. Halide-rich chalcogen chlorides and bromides, synthesized at low temperatures, 

often from solution, and inadequately structurally characterized, 

n. Chalcogen-rich compounds of the type Ta(Q4)xXy, containing varying length linear 

chains of Ta atoms coordinated in a square antiprismatic fashion by Q2^~ groups. 

Table 1-4. Summary of all reported tantalum chalcogenide halides. 

I. n. 
Ta(Q4)xXy 

Early chalcogenide halides (Q =  Se ,Te ;X =  Br , I ; r=I ,2 ,  4 ; y = l , 2 )  

Compound Reference Compound Reference 

TaSClj 46, 47 (TaSe4)4Br 56 
TaSzCr 48 Ta4Sei6Br2 57 
TaSjCU 49 (TaSe4)2l 58 
TaSClg' 50 (TaSe4)3l 59 
TaSBra 46 TaTe4l 3 
TaSeBrs 46 

' compounds for which no information is available except chemical formulae. 
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TaQXs, (Q = S, Se; X = CI, Br) and similar compounds 

Until the present work, seven halide-rich chalcogen halide compounds of tantalum 

were known. TaSCU, TaSBrs and TaSeBrs have all been made by reaction of the tantalum 

pentahalide with the proper antimony chalcogenide in a solution of CS2 at room 

temperature.'*'^ TaSCls has also been prepared in sealed tubes at 80°C using B2S3 as the 

sulfur source.^"''' SbXs and BCI3 are the by-products, respectively. Because these 

compounds were formed under relatively mild conditions, it is not surprising that single 

crystals were never obtained, but rather polycrystalline material only. As such, structural 

characterization has been lunited to elemental analysis and spectroscopic techniques. 

TaSCla is the most extensively characterized of these. It forms yellow moisture-sensitive 

powders reported to be soluble in acetonitrile with formation of the adduct 

TaSCl3'2CH3CN.^'*^ The pure solid decomposes at 200®C, into an uncharacterized 

compound with formula "TaS2Cl".''"' Based on the (terminal) tantalum-sulfur stretching 

frequency of 463 cm"', TaSCb (and TaSBr3) has been assigned to the MoOBrs structure 

type (distorted double chains of edge-sharing Mo02/2Br2^2Br2 octahedra propagated 

through inequivalent trans-0 atom bridges) by Drew and Tomkins.'''' However, Baghlaf 

and Thompson'"*^ suggest it to be isostructural with NbSCU, which is agreed to adopt the 

NbOCU structure (linear double chains of edge-sharing Nb02/2Cl2/2Cl2 octahedra 

propagated through equivalent trans-0 atom bridges).^"^ This controversy has not been 

resolved, and clearly further study is required. TaS2Cl2, TaS2CI, TaSCl9, and TaSeBrs 

remain almost totally uncharacterized. 

Additionally, Russian scientists have thoroughly explored the phase diagram for 

three double-binary Ta-Q-X systems formed between TaCls and chalcogen chlorides.'"' 

Ta-Se-Cl, Ta-Te-CI and Ta-S-Cl systems were examined using mixtures of TaCls + TeCU, 

TaClj + TeCLi, and TaClj + S2CI2, respectively, from 0-100 mole % of each component. 

Differential thermal analysis with visual observation was the method used. In the Se and 

Te studies, incongruently melting 1:1 compounds were reported, but no other information 

was provided on such "TaClj-QCU" (Q = Se, Te). Interestingly, no compounds were 
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reported in the Ta-S-Cl system, though TaSCls, TaSaCb and "TaClgS" (formulated as the 

1 :1  adduc t  TaCls -SCU)  were  repor ted  to  be  s tab le  in  the  reg ion  s tud ied .^"*^ 'Clear ly ,  

since the mixtures studied are quite halide-heavy, such a study is doomed to miss metal-

rich compounds. Also, compounds stable beyond the pressure-temperature limits of the 

study will obviously not be represented. 

Ta(Qd^y (Q = Se, Te; X = Br, I) 

Structural understanding of the series of compounds Ta(Q4)xXy (Q = Se, Te; X = 

Br, I) is much better, due to the fact that single crystals grow readily from these reactions. 

Five Ta(Q4)xXy compounds are known, and can be prepared easily by direct combination 

of the elements in evacuated fused silica tubes at an appropriate temperature (generally 

460°C to 625°C). All structures consist of one-dimensional Ta(Q2)2 chains in which Ta"*"" 

and/or Ta^" ions are rectangular antiprismatically coordinated by four Qj' groups. 

Columns of halide ions intersperse the chains, providing crosslinks and charge balance. A 

typical structure is represented in Figure 1-6. These compounds have generated much 

interest due to the nearly linear chains of metal atoms, which can be evenly spaced as in 

(TaSe4)2l, or can exhibit short and long M-M lengths, as in (TaSe4)3l and (TaSe4)4Br. 

Niobium: Review of NbsQX? (Q = S, Se, Te; X = CI, Br, I) 

Recently a new class of niobium cluster compounds was discovered, the 

chalcogen-substituted halides NbsQX?. These compounds nicely demonstrate how 

theoretical understanding can drive successful synthetic chemistry. The binary halides 

NbsXg had been known for thirty years. The gross aspects of their electronic structures 

were figured out early, and a comprehensive band structure study on P-NbsBrs has been 

reported. NbsXg are paramagnetic,^"^ with one electron delocalized over the cluster. The 

extent of delocalization differs depending on the halide. a-NbsClg follows Curie-Weiss 

behavior with an effective moment of 1.86 Bohr magnetons, consistent with the spin-only 

value for one unpaired electron. However P-NbsBrg and P-Nbslg show anomalously low 
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(a) [001] view of 132(864)21, showing the packing of the [132(862)2] chains and the 
distribution of the iodide anions. Black circles, metal atoms; Open circles, 
chalcogen atoms; Grey circles, halide atoms. 

(b) The M(Q2)2 chains found in Ta(Q4)nXy. Black circles, Nb, Ta; Open circles, 
chalcogen. Halides are not shown. In Ta2(8e4)2l, the metal atoms are evenly 
spaced (d(Ta-Ta) = 3.206 A), and the compound shows a low electrical resistivity 
of 1.5 X 10"^ Q-cm. In other M(Q4)nXy compounds like Ta48ei6Br2 short and long 
M-M distances alternate (Ta-Ta: 3.055(1), 3.187(1)), and the compounds have 
higher electrical resistivities. 

Figure 1-6. 8tructural views of M(Q4)nXy. 
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moments of 1.0 B.M. (Br) and 0,8 B.M. (I), which remain almost constant between 90 K 

and 350 K, and increase only slightly at higher temperatures. This phenomenon has been 

ascribed to a superexchange interaction mechanism between the clusters operating through 

the surrounding halide matrix.^"' The idea that substitution of a divalent element (i.e. a 

chalcogen) for a halogen might be possible, thereby "oxidizing" the compound by one 

electron and leading to a closed-shell, diamagnetic compound, was proposed in 1976 by 

Hulliger.^'*'' In 1988 Honle, et ai., succeeded in carrying this idea to fruition with the 

synthesis of NbaTeBr?.'^*' Subsequently, nearly all members of the family have been 

reported. Table 1-6 compiles these, and gives references and some structural information. 

Their structures and electronic properties will now be discussed. 

Table 1-6. NbsXg and NbsQX? compounds, and structural information. 

Compound Space Stacking Nb-Nb Nb-Q Nb-X (A) Ref 
group variant (A) (A) 

NbsCU Psml  ...h... 2.809 2.462 2.424 - 2.624 5 

NbsTeCl? Psml  ...h... 2.897 2.699 2.414-2.674 42 

P-NbsBrg Ram ...hhcc... 2.882 2.596 2.552 - 2.792 11 

NbsSBr? P3ml ...h... 2.901 2.416 2.544 - 2.805 58, 59 

NbaSeBr? P3ml ...h... 3.010 2.520 2.530-2.820 58 

NbsTeBr? P3ml ...he... 2.958 2.702 2.557-2.819 58 

P-Nbalg Rim ...hhcc... 3.002 2.755 2.756 - 3.020 11 

NbsSIv P63mc ...he... 2.995 2.404 2.737 - 2.993 58 

NbsSel? P63mc ...he... 3.017 2.533 2.716-3.002 58 

NbsTel? P63mc ...he... 3.040 2.695 2.722 - 3.001 58 

NbsTel? P3ml ...h... 3.059 2.713 2.737 - 3.026 60 
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Structural relationship between Cdl2, NbsXg and M3QX7 

A facile structural relationship exists between the binary halides NbaXg, the 

chalcogenide halides M3QX7, and the Cdlj (or Cd(0H)2) structure type. The Cdl2 type 

can be considered the parent type of NbsXg and M3QX7, with the latter two types derived 

from Cdl2 by the existence of metal-site vacancies, the presence of metal-metal bonding, 

and the substitution of a chalcogen for a halide. All three types are layered structures, 

built up of close-packed anion layers interleaved in every other layer by metal atoms. 

Since alternate layers are empty, a convenient way to view the extended three-dimensional 

structures of these three types is to conceive of each {anion layer-metal layer-anion layer} 

"slab" as a two-dimensional subunit, extending in the x and y directions. In conventional 

solid-state chemistry nomenclature, these slabs are represented as J [chemical formula], 

with the superscript denoting the two-dimensional (layered) nature of the compounds, and 

the subscript denoting the (quasi) infinite nature of solids. Thus the salient structural 

features of the three structures discussed here are then conveniently represented as 

stacking of J [Cdli], J [NbsXs], or j [M3QX7] slabs. The slabs are weakly held together, 

cohesed by dispersion forces acting through the intervening van der Waals gap. The weak 

interslab interactions allow the slabs to slide over one another with relative ease, and is 

responsible for the lubricating feel such layered compounds have during mortar and pestle 

grinding. 

For present purposes, the structural relatioriship between Cdl2, NbsXg and M3XQ7 

can be nicely illustrated simply by reference to the individual J [metal-anion] slabs that are 

their building blocks. These slabs are described as follows: 

Cdl2 

The occupation of the octahedral interstices formed between the two anion layers 

is complete, with e\"ery possible site filled with a metal atom. The coordination of the 

metal atoms is perfectly octahedral, with local site symmetry 3 m. The spacing between 

the metal atoms is equivalent to the hexagonal a-axis length, and there is no metal-metal 



www.manaraa.com

22 

bonding present. A [001] projection of a single ^[Cdla] slab, and a [100] view of two 

I [Cdl2] slabs of this common structural archetype are shown in Figure 1-7. 

NbsXs (X = a, Br, 1) 

In the binary niobium halides, only three-quarters of all possible "octahedral" 

interstices sites between the anion layers are occupied by metal atoms, and the remaining 

site is vacant. Another formulation of NbsXg is Nb3(vacancy)iXg, whose 2:1 anion;(metal 

+ vacancy) ratio highlights its link to Cdl:: i.e., a metal-deficient Cdl2. Three nearest 

niobium atoms are displaced from the centers of their interstitial sites toward each other, 

drawn together to form trinuclear clusters. This displacement creates the distorted, eight-

coordinate environment found in NbsXg. Sbc halides and two metal atoms make up the 

bicapped distorted octahedron coordination sphere of each Mb. Alternately, the slabs are 

condensed trimers of edge-sharing distorted octahedra with Nb-Nb bonding, as shown in 

Figure 1-8. The local metal cluster unit is the common MsXjs type, with one Hs bridging 

atom, three |i2 edge-bridging atoms, and nine atoms that provide bridges between clusters 

and link the extended slabs together. The cluster has local symmetry Csv (in hexagonal 

structures). [001] and [100] projections of this structure are shown in Figure 1-8. 

M3QX7 (M = Nb. Ta; Q = S. Se, Te; X = CI, Br, I) 

The metal site occupation is the same as in NbsXg, with the metal atoms forming 

triangular clusters. However, introduction of a chalcogen into the halide matrix creates a 

site-preference problem. M3QX7 slabs differ from NbsXg slabs only in the identity of the 

atom that occupies the ns bridging position, capping the face of the trinuclear cluster. In 

M3QX7, this site is always occupied by the chalcogen, with important electronic 

ramifications discussed further below. The [001] projection of one J[ M3QX7] slab is 

shown in Figure 1-9. 

The reason for the chalcogen's preference for this site has been explained based on 

site electron density calculations. The electron richness or poorness of a particular 
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The Cdl2 structure 

n n n o n 

(a) [001] projection of a single J [Cdl2] slab. Metal atoms (small black circles) are 

evenly spaced in the perfectly octahedral coordination sites formed by close-
packed anion layers (open circles). Metal-anion bonds are represented; there is no 
metal-metal bonding. 

(t) [100] view of the stacking of two J [Cdl2] slabs. The unit cell is indicated. 

Figure 1-7. The Cdl2 structure, in (a) [001] and (b) [100] projections. 
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NbaXg (X = Cl,Br,I) 

b 

(a) [001] projection of a single ^ [ NbsXg] slab pC = CI, Br, I). The vacancy position 

(see text) is located at (0, 0). A hexagonal unit cell is also drawn. 

a *-

(b) [100] projection of two (antiferroelectric) J [ NbsXg] slabs 

Figure 1-8. The NbaXg structure. The triangular Nbs clusters are emphasized by heavy 
bonds between the metal atoms (small black circles). Open circles are 
halide atoms, (a) Projection down the stacking direction ([001]). 
(b) Side view ([100]). 
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M3QX7 (M = Nb, Ta; Q = S, Se, Te; X = CI, Br, I) 

(a) [001] projection of a single J [M3QX7] slab. A hexagonal unit cell is shown. 

The vacancy site in this projection is located at (1/3, 2/3). 

(b) [100] view of two (ferroelectric) J [M3QX7] slabs. 

Figure 1-9. The M3QX7 structure. The triangular Nbs or Tas clusters are highlighted by 
heavy bonds between the metal atoms (small black circles). The clusters 
are capped by a chalcogen (grey circles), and the remaining coordination 
sites are occupied by halides (open circles). 
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crystallographic site can be estimated within the context of Extended Huckel theory using 

MuUiken population analysis. Such calculations were performed by Miller on the 

compound a-NbaClg.^'*^^ Within each NbsXg slab, there are four crystallographically 

inequivalent anion sites (assuming Csv cluster symmetry): 1) ^3-X', cluster capping atom, 

2) |i2-X', cluster edge-bridging, 3) |i2-X°, two-cluster bridge, and 4) iis-X", three-cluster 

bridge. (The i and a superscripts refer to the irmen and ausser notation developed by 

Schafer and von Schnering.) The Mulliken populations calculated by Miller for these four 

sites in a-NbsClg are illustrated in Figure 1-10. His results showed the |i3-X' capping 

position to be the least electron-rich site of the four distinct anion positions. 

Consequently, the less electronegative element in a mixed anion should reside at this 

position, leaving the more electronegative atoms in the electron-richer sites. Since the 

(Pauling) electronegativities of the chalcogens S, Se, and Te are all less than that of the 

halogens CI, Br, and I (see Table 1-3), the chalcogens choose the relatively electron-poor 

|i3-X' capping position, and the halogen atoms occupy the sites of greater electron density. 

The seven M3QX7 structure types 

The above structural descriptions apply to individual slabs only. For the full three-

dimensional NbsXg and M3QX7 compounds, an endless variety of structure types (stacidng 

variants or polytypes) is of course possible because of the limitless ways these slabs can 

stack upon one another. Structure type differences can result from adjacent slabs being 

shifted or rotated with respect to one another, or from an inversion of the slab, or both. 

These stacking variants have been sorted into two broad classes based on orientation of 

the MsXcap tetrahedron present in the slabs. When all MsXap dipoles are oriented 

unidirectionally, the structure is termed "ferroelectric". Conversely, alternating M3Xaip 

dipoles give "antiferroelectric" structures. Figure 1-11 Ulustrates these two categories. 

Seven M3QX7 structure types have been characterized: a-NbsClg, 3-Nb3l8, 

NbsSBr?, Ta3SBr7, Nb3Sel7, Nb3TeBr7, and o-NbsSI?. Of these, five have trigonal or 

hexagonal synmietry. Only Ta3SBr7 (monoclinic) and o-NbsSI? (orthorhombic) have 
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Figure 1-10. Calculated MuUiken populations in a-NbsClg. Three of the four 
inequivalent crystallographic sites are labeled. Electron rich sites are 
shaded darker. 
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% 
% 

Terroelectric' 'Antiferroelectric' 

Figure 1-11. Orientation of the MsXap units within the halide matrix leading to 
"ferroelectric" (unidirectional MsXap units) and "antiferroelectric" 
(altematmg MsXap direction) stacking. 



www.manaraa.com

29 

symmetries other than hexagonal. All are stacking variants built from the J [M3QX7] slabs 

discussed above, except for o-NbsSI?, which contains undulating NbsSI? layers with a 

diflferent connectivity of the clusters. 

The a-NbsCls structure type 

The J [M3QX7] adjacent slabs are oriented antiferroelectrically with respect to one 

another, and there are two slabs per unit cell. (In the binary halides of course, Q = X.) 

The structure is centrosymmetric and adopts the space group P 3 m 1. Each slab is related 

to the next via an inversion center located at (0, 0, 0). The stacking sequence of the anion 

layers is (...AB...), or (...A...). Lattice energy calculations have indicated that this stacking 

variant minimizes hard-core repulsions rather than electrostatic potential. This theoretical 

result is corroborated by the experimental observation that all "hard" chlorides known 

(NbsClg, NbsTeCl? and TasTeCl?) adopt this structure type, whereas compounds 

containing "softer" bromides and iodides are more influenced by the Madelung term.^'*^^ 

The a-NbsClg type is illustrated in Figure 1-12. 

The P-NbJa structure type 

The rhombohedral P-Nbslg type (centrosymmetric, space group R3m) is 

characterized by sbc-slab per unit cell stacking, with an anion layer stacking sequence of 

(...ABABCACABCBC...), or (...hhcc...). The orientation of the slabs is antiferroelectric. 

Only two compounds, P-NbsBrg and jS-NbsIg, adopt this type, illustrated in Figure 1-13. 

The NbsSBr? structure type 

The NbsSBr? type (Figure 1-14) is the simplest of all the 3-1-7 compounds, having 

only one slab per unit cell. As such, it is necessarily noncentrosymmetric and ferroelectric. 

The space group adopted is P3ml, and the anion stacking sequence is (...AB...), or 
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The a-NbsClg Type 

Space group: P3nil 
• (...AB...) or (...h...) anion stacking sequence 
• Centrosymmetric, antiferroelectric orientation of MsXeap units 

• Two J [M3QX7] slabs per unit cell 

(a) [001] view 

I 1 

(b) [100] view 

Compounds: a-NbaClg a-NbsBrg, a-NbsIg, NbsTeCl?, TasTeCl?. 

Figure 1-12. The a-NbsClg structure type. 
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The P-Nbslg Type 

Space Group R3 m. 
• (...ABCBCABABCAC...) or {...hhcc...) anion stacking 
• Centrosymmetric, antiferroelectric orientation of NbaXcp units 

• Six J [NbaXg] slabs per unit ceU 

Compounds; 

Figure 1-13. 

P-NbsBrg, P-Nbslg 

Perspective [100] view of the P-Nbalg structure type. 
NbsXcip orientation in the slabs is indicated at right. 
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The NbsSBrv Type 

Space Group: PSml 
• (...AB...) or (..A..) anion stacking sequence 
• Non-centrosymmetric, ferroelectric orientation of the MsQap units 

• One J [ M3QX7] slab per unit cell 

(a) [001] view 

/ 
b 

• = metal 

O = chalcogen 

0 = halide 

(b) [100] view of two slabs c 
and the unit cell. 

Compounds: NbsSBr?, NbsSeBr?, A-NbsTel?. 

Figure 1-14. The NbsSBr? structure type. 
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with adjacent slabs directly "superimposed" on one another (viewed down the 

stacking direction [001]). NbsSBr?, NbsSeBr?, A-NbsTel?, and the mixed metal derivative 

Tas-xNbxTel? (x « 2) adopt this stacking type. 

The TasSBry structure type 

TasSBr? is the sole example of this type, which is closely related to NbsSBr?: a 

one-slab per unit cell, noncentrosymmetric and ferroelectric structure, with an anion layer 

stacking sequence of (...AB...), or However in the TaaSBr? type adjacent 

J [TasSBr?] slabs are not "superimposed" on one another as they are in NbsSBr?. The 

TasSBr? structure can be derived from NbsSBr? by simply shifting alternate ^ [M3QX7] 

slabs by QA a) relative to the hexagonal cell. This shift destroys the hexagonal symmetry 

of the NbaSBr? type: TasSBr? is monoclinic, forming in space group Cm (Figure 1-15). 

TasSBr? and NbsSBrv in fact represent the only two possible unique one-slab stackings of 

I [M3QX7] slabs - all other permutations result in at least a two-slab repeat unit. This is 

discussed in greater detail in Chapter 3. 

The NbiSel? structure type 

The NbsSel? type is a non-centrosymmetric, ferroelectric structure containing two 

^ [M3QX7] slabs per unit ceU. Adjacent slabs are related by a 63 screw axis (Figure 

1-16). Anion layer stacking is (...ABCB...) or (...he...). Only iodides have been observed 

to adopt this structure type: Ac-NbsSI?, Ac-Ta3Sl7, Nb3Sel7, Ta3Sel7, Ac-NbsTel?, 

Ac-TasTel? and /jc-Tas-xNbxTel? (0 ^ x ^ 3). 

The NbsTeBr? structure type 

This type, adopted only by its nominal compound, is a non-centrosymmetric, 

antiferroelectric, two slab stacking variant. The compound forms in space group P3ml, 

with an (...ABCB...) or (...he...) anion sequence (Figure 1-17). 
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The TasSBry Type 

space Group: Cm 
• (...AB...) or (..A..) anion stacking sequence 
• Non-centrosymraetric, ferroelectric orientation of the TasScap units 

• One J [ M3QX7] slab per unit cell 

b 

• a 

(a) [001] view 

a 

(b) [010] view of two 
slabs and the unit cell 

Compounds: TasSBr?, Ta^Nbs-xSEr? (x « 2) 

Figure 1-15. The TasSBr? structure type, in views (a) perpendicular to the slab stacking 
direction and (b) parallel to the stacking direction. 
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The NbsSely Type 

Space Group: PSsmc 
• (...ABCB...) or (...he...) anion stacking sequence 
• Non-centrosymmetric, ferroelectric orientation of the MsQcp units 

• Two J [ M3QX7] slabs per unit cell 

(a) [001] view 

/ 
-• b 

• = metal 
O = chalcogen 

O = halide 

(b) [100] view of two slabs 
and the unit cell 

Compounds; //c-NbsSI?, NbsSel?, TasSel?, Ac-NbaTel?, Ac-TasTel? 
/jc-NbxTa3.xTel7 (0 ^ x ^ 3). 

Figure 1-16. The NbsSel? structure type. 
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The NbsTeBry Type 

Space Group P3ml 
• (...ABCB...) or (...he...) anion stacking sequence 
• Non-centrosymmetric, antiferroelectric orientation of the NbsTecap units 

• Two J [NbsTeBrT] slabs per unit cell 

(a) [001] view 

(b) [100] view of 
two slabs and 
the unit cell 

Compounds: NbsTeBr?. 

Figure 1-17. The NbsTeBr? structure type. Small black circles: Mb; larger grey circles, 
Te; open circles, Br. 
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The or\hoxhovrAi\c-Nb3Sl7 structure type 

Orthorhombic-'b^^Sli is not a stacking variant. In this unusual structure, the 

J [NbsSI?] slabs are not flat, but undulate along the crystallographic (ab) plane. The 

connectivity of the NbsXis clusters is also different. The structure can be formulated 

[NbS',74 ^2/2^y2hV^^''L'''4^'2/2^n]> indicating two inequivalent sets ofNb atoms and an 

inter-cluster bridging role for the sulfur. One Nb is coordinated by two sulfur atoms trans 

to one another. The sulfur atom that caps the triangular Nbs cluster also serves as a 

bridge to the vertex of a neighboring cluster, as illustrated in Figure 1-18. The remainder 

of the Nbs coordination environment is analogous to the previous M3QX7 compounds. 

The symmetry of the cluster is C„ with two short Nb-Nb bonds (2.96 A) and one longer 

Nb-Nb bond (3.05 A). From an anion-pacldng point of view, o-NbsSI? is a cubic close-

packed arrangement of sulfide and iodide ions with Nb in 3/8 of the octahedral holes. The 

distribution of metal cations along the stacking direction has been described in terms of a 

concentration wave consisting of alternating 5/8 and 1/8 occupation of the octahedral 

holes. 

Five of the structure types (a-NbsClg, NbaSBry, TasSBr?, NbsSel? and o-NbsSI?) 

discussed above will figure prominently in the following thesis. 

Electronic aspects: Molecular orbital picture / Band structure 

Groundwork; Electronic structure calculations leading to an understanding of the 

molecular orbital diagram of discrete trinuclear cluster complexes of transition metals 

were first worked out in 1964 by Cotton and Haas.'®'^ Subsequently, molecular orbital 

calculations have been performed by diverse groups on a great range of trinuclear cluster 

compounds, both molecular and quasi-infinite.^"' As a precursor to the understanding of 

the electronic structure of trinuclear cluster-containing quasi-infinite solids, it is instructive 

to consider the MO resuhs fi'om such molecular systems. The conclusions so gained can 

then be broadened to include trinuclear clusters "condensed" into extended solids. 
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orthorhombic-^2^h 

(a) 
Near-[010] view 
of two of the 
undulating layers 
and unit cell of 
o-NbsSI? 

Cluster connectivity in 

[NbS 1 '2/213/2 ]2[NbS 2/412/212/2 ] 

Compounds: o-NbsSI?, oTasSIy 

Figure 1-18. The o-NbsSI? structure type, (a) View parallel to the undulating M3SI7 
layers, (b) Illustration of the linkage of two clusters. In both pictures, the 
black circles are metal atoms, the grey circles are sulfiirs, and the open 
circles are iodide. 
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Moleciolar orbital calculations have been done on transition metal systems 

beguining with bare clusters, then moving to partially ligated M3X4'^ cluster cores, 

and finally to complete M3X13 clusters.^'^^ Here the M3X13 cluster is considered: this 

species represents a trinuclear cluster with the same coordination environment found in 

M3QX7. The orbital basis sets for these calculations consist of the transition metal s, p, 

and d orbitals, plus s and p orbitals of the ligands. Of primary interest here are the orbitals 

involved in metal-metal bonding, which bear directly on the stability and physical and 

electronic properties of the compound. Low-lying ligand lone pair orbitals and metal-

ligand bonding orbitals are filled, where applicable. The molecular orbital diagram 

generated by these calculations is shown in the left-hand column of Figure 1-19. The 

HOMO was found to consist of a (1 + 2) set of three orbitals with contributions primarily 

fi-om the metal d orbitals. The LUMO was found to be a slightly bonding orbital also 

primarily of metal character. In Csv symmetry, which is the local symmetry of the M3QX12 

cluster fi-agments in M3QX7, these orbitals carry the labels aj + e (HOMO) and ai 

(LUMO). The predicted existence of this ai + e + ai scheme correlates nicely with bond 

distances observed from clusters with varying electron counts. Turning to Cotton's 

trinuclear cluster complexes, the [Nb3Clio(PH3)3]" anion contains sbc cluster electrons 

{(3-Mb X 5e~) - (10-Cl x le")+ (le7monoanion)}, which occupy the ai + e orbital set. The 

Nb-Nb distance in this anion is 2.976(6) A. According to the MO calculations the ai 

LUMO is also of bonding character, implying that occupation of this orbital should 

increase the bonding character in the cluster, and concomitantly decrease the Nb-Nb bond 

length. Cotton, et al., did synthesize the eight-electron compound Nb3Cl7(PR3)6, and 

indeed the Nb-Nb distance has shrunk to 2.832(4) A, confirming the bonding character of 

this orbital. Other elements are known to form trinuclear clusters that can be described by 

the above treatment, with either sbc (Zn2Mo308,^®^' Na2Ti3Cl8,^®^' [W3Se4(NCS)9]^®^^) or 

eight ([M030CU(0Ac)3]" cluster electrons. 

The basic understanding of the electronic structure of these discrete molecular 

clusters carries over smoothly into an understanding of the electronic structure of the 
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Molecular orbital and energy band diagrams for NbsXis^ clusters and NbsQX? solids 

a. + ^ 

Metal-Metal bonding orbitals 

e -H- -H-

ai "W-

4+^4+ 

Metal-ligand 
and 

ligand lone pair 
orbitals (NbaXis'") 

or bands 
(NbaXg and NbsQX?) 

Nb3X,3' ^[NbjXg] [NbaQXy] 

Figure 1-19. Qualitative orbital correlation diagram relating the molecular orbitals in a 
discrete NbsXia^ cluster to the orbital bands in the extended solids NbsXg 
and NbsQX?. A perturbation of the energy levels will occur on going from 
NbaXg to NbsQX?; the magnitude will vary with Q. However, since the 
orbitals shown in the dashed box are all predominantly metal-metal in 
character, the change will be small. 
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trinuclear cluster-containing extended solids. Condensation of the discrete clusters into an 

extended solid results in a similar overall picture; however, in an extended solid, 

translational symmetry mtroduces additional symmetry elements and discrete orbitals 

broaden into bands consisting of a multitude of energy levels. Miller performed 

calculations on a hypothetical NbsClis^ cluster and correlated tlus molecular scheme with 

J [NbsClg] layers.^*^' In J [Nb3Clg], the intercluster interactions are mediated by bridging 

chloride atoms. However, near the Fermi level (the HOMO in a molecular system), the 

Nb-Cl interaction is weak, and consequently these bands remain quite narrow, behaving 

like localized molecular orbitals. Figure 1-19 shows a general orbital correlation diagram 

similar to that worked out by Miller. 

Khvorykh, et al., have also done Extended Hiickel MO calculations on the 

NbsSBrn^ clusters in NbaSBr?.'^'' Their results reproduced the schemes of Cotton and 

Miller. The full band structure of P-NbsBrg was derived in 1994 by Meyer.'®^ 

In NbsXg, seven electrons are available for cluster bonding. The ai + e bands are 

filled, and one electron resides in the singly degenerate ai band (Figure 1-19, middle 

column). This nicely explains the observed paramagnetism of these compounds, although 

the unusually low ^lefr values for p-NbsBrg and P-Nbslg suggest more complicated 

interactions. This understanding of the electronic structure of NbsXg clarifies the rationale 

behind the synthesis of M3QX7. If a divalent chalcogen is substituted for a halide, this 

leads to "oxidation" of the cluster by one electron, effectively emptying the upper ai band. 

The six remaining cluster electrons fill the ai + e set of orbitals (band) shown in the right-

hand column of Figure 1-19. 

Conclusions 

The firm establishment of the crystal structures, physical properties, and electronic 

structures of the NbaQX? family seemed an encouraging precedent for the synthesis of 

analogous new tantalum cluster compounds. As demonstrated by the trend in the binary 

Ta and Nb halides, electron-richer (i.e., reduced) systems generally exhibit more extensive 
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M-M bonding, or higher nuclearity clusters. Fewer electrons available for cluster bonding 

might contravene the marked natural tendency of tantalum to form the higher nuclearity 

(hexanuclear) clusters so prevalent in tantalum halide chemistry. Therefore, although 

seven-electron tantalum haUde clusters (e.g. TaaXg) haven't been observed to form under 

any synthetic conditions to date, the sbc-electron cluster compounds TaaQX? might be 

attainable. After several early failures due to because the temperatures chosen (the 

temperature region of the synthesis of NbsQX?, near 800°C) were too high, success was 

ultimately achieved at lower temperatures (< 550°C). Chapters Two through Five of this 

thesis detail the compounds discovered. 
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CHAPTER TWO 

NEW TANTALUM CHALCOGENIDE IODIDES 

Selenide and Telluride Iodides - Introduction 

Three new tantalum chalcogenide iodide compounds have been discovered, adding 

to the three ((TaSe4)2l, (TaSe4)3l, TaTeJ, see Chapter One) compounds previously 

known. 

/ic-TasSelv and /ic-TasTelv 

Synthesis 

Since /ic-TajSel? and Ac-TasTel? are prepared similarly and are isostructural with 

each other, they will be discussed together. The prefix "he-" refers to the close-packed 

anion stacking sequence (i.e., ...ABCB...), and serves to distinguish these compounds 

from stacking variants, as discussed below. 

Ac-TasQI? (Q = Se, Te) were prepared by stoichiometric reaction of Ta foil, 

chalcogen, and iodine in evacuated glass ampoules at 450°C for ca. one week, followed by 

rapid quenching to room temperature. Reactants were purified as far as possible before 

use as follows: Tantalum foil (Aesar, 0.027 mm thick, 99.99%) was cleaned with an 

HF/HNO3/H2SO4 solution to remove surface impurities, then rinsed with ethanol and dried 

in vacuo at 500°C. Selenium powder (Alfa), and tellurium powder (Alfa) were both 

sublimed twice before introduction into the glove box. Iodine (Alfa, 99.9%, resublimed) 

was used as received. All purified reagents and products were subsequently handled in an 

Ar-filled glove box. 

Crystals of Ac-TasSel? and hc-TasTeh both readily form as shiny black hexagonai 

prisms, with a micaceous morphology. Whereas hc-TasSeh seems to form flatter, plate

like hexagonal prisms, /jc-TasTel? is mostly found as long columns, in an amazing variety 

of shapes. Pyramids, proper prisms, bullet-shapes, etc. all form abundantly. Figure 2-1 

shows SEM images of the two distinct crystal morphologies. The crystals are found 
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(a) SEM image (x450) of /ic-TasSelv crystallites. //c-TasSel? formed as hexagonal 
drums, unlike Ac-TasTel? (below), which crystallized as hexagonal prisms. 

(b) SEM image (x85) of a field of /jc-TasTel? crystals, showing the hexagonal 
prismatic morphology 

Figure 2-1. SEM images of crystalline Ac-TasSel? and hc-T&^Teh. 
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embedded in bulk powder as well as being transported to clean regions of the reaction 

tube. They are stable in air, water, and non-oxidizing acids indefinitely, but rapidly 

decompose in dilute HNO3. Small hexagonal prisms suitable for x-ray dififraction cleave 

easily and cleanly fi-om the longer columns - the larger, mtact crystals usually are of poor 

quality for single crystal diffraction experiments. The best crystals can be grown from 

annealing reactions (transport reactions), conducted at 450°C for one to two weeks. It is 

not necessary to add a transport agent to the powdered starting compounds. 

Products were identified by comparing observed Guinier powder x-ray diffraction 

patterns for Ta compounds to those obtained from analogous Nb compounds. Conditions 

for the formation and stability of TasQI? indicate a lesser temperature stability range with 

respect to the Nb analogues, which survive up to ca. 900°C. Guinier powder X-ray 

diffraction of products fi-om reactions conducted at temperatures from 350° to 900°C 

indicates an upper temperature limit of ca. 560°C for TasQI?. DTA data of Ac-TasTelT 

corroborate these experimental observations, showing a large thermal event coupled to a 

ca. 50% mass loss near 565°C. The DTA plot is shown in Figure 2-2. The small mass 

loss over the range 250°C - 400°C is most likely due to impurities in the sample. 

Experimentally, at temperatures higher than ca. 560®C, only Tals and Ta6li4 can be 

identified in reaction tubes quenched rapidly from high temperature; the remaining product 

is amorphous to x-rays. With this information, it is likely that the mass loss observed in 

the DTA experiment is due to the volatilization of the decomposition product Tals. 

Structure 

Black reflective hexagonal prisms of Ac-TasTel? (prism) and Ac-TasSel? ("drum") 

from reactions at 450°C (two weeks) were selected for single crystal x-ray diffraction. In 

both cases, a hexagonal unit cell similar in size to the corresponding niobium compound 

was indexed using 25 reflections located by the diflfractometer random search routine. 

Since the NbsSel? structure type was indicated by the Guinier patterns, no additional unit 

cell size checks were performed. Subsequent solution of the structures in the NbsSel? 

type provided final verification. Further data collection details are given in Table 2-1. 
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Table 2-1. Crystallographic collection data for //c-TasSel? and /ic-TasTel?. 

/ic-TaaSel? /ic-TasTel? 

Formula weight 1510.13 1558.78 
Crystal system hexagonal hexagonal 
Space group P63mc (no. 186) P63mc (no. 186) 
Crystal Color black black 
Crystal dimensions (mm) 0.22x0.22x0.1 0.12x0.12x0.2 
Unit cell parameters (A) 

a 7.541(1) 7.591(2) 
c 13.590(3) 13.907(3) 

Volume (A^) 669.90(20) 694.03(26) 
Z 2 2 
dale (gcm'^) 7.486 7.456 

Diffractometer CAD4 Rigaku AFC6R 
Radiation, wavelength Mo Ka, 0.71069 A MoKa, 0.71069 A 
Linear absorption coeflF. 427.8 cm"' 407.63 cm"' 
Data collection temp. 23°C 23°C 
Scan method (O-scan o-scan 
20 range 2° ^ 20 ^ 60° 2° ^ 20 ^ 50° 

Range in hkl ±h,±k,±J +h, +k, +/ 

Number of data collected 7814 1031 
Observed (I > 2al) 3259 753 
Unique 710 303 

Parameters refined 24 24 
Residuals 

R' 0.053 0.030 
Rw' 0.046 0.031 

Goodness-of-fit 1.11 1.30 

'R = Z(|Fj -lFca,J)/ElFj 
' 'R,= {Zw(|Fob.l-lFcJ)'/2:|Fj'}"' 

where w = l/a^(Fobi) 
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Both structures were solved by direct methods using SHELXS-86 and refined 

with the TEXSAN crystallographic package.'®'^ An empirical psi-scan absorption 

correction was applied to both data sets, followed by a DIFABS^' correction to the 

isotropically refined atoms (unnormalized transmission ranges: TasSel?, 0.8 - 1.1; 

TasTel?, 0.9-1.1). All positions were then refined anisotropically. Atomic coordinates, 

isotropic thermal parameters and anisotropic displacement parameters are given in Table 

2-2. 

Ac-TaaSel? and Ac-TasTel? are isostructural with NbsSel? (and NbsTel?), which is 

described and illustrated in Chapter One, Figure 1-16. 

Ta-Ta distances in Ac-TasSel? and /jc-TasTel? (2.955(2) A and 3.007(2) A, 

respectively), are comparable to those in Ta6li4 (2.80 - 3.08 A),'^' though slightly longer 

than in [Ta3Clio(PEt3)3]' (2.932 A),^"' presumably because of the latter's smaller halide. 

Ta-I and Ta-chalcogen distances are also typical. The Nb-Nb distances in the 

corresponding Nb analogues (3.02 A for NbaSel? and 3.04 A for /jc-NbsTelT)^'" are 

slightly longer than the Ta-Ta distances, which agrees with the concept of greater d-d 

orbital overiap in reduced Ta compounds due to the greater radial extent of the Ta 5d 

orbitals compared to Nb 4d. (Analogous niobium compounds usually show slightly longer 

bonds and lattice parameters than their Ta counterparts along directions in which metal-

metal and metal-anion bonds predominate.) Bond distances and angles are given in Table 

2-3. 

X-ray photoelectron spectroscopy 

Samples /jc-TasSel? and /jc-TasTel? were finely powdered in the glove box and 

transferred under inert atmosphere to a PHI 550 muUi-technique surface analyzer, to 

obtain x-ray photoelectron spectra. The binding energies obtained for the Ta Aina peak 

(^-TasSel?, 23.4 eV; Ac-TasTel?, 23.4 eV after correction for charging using the 

adventitious C Is peak, as recommended corroborate the highly reduced nature of the 

tantalum atoms in both compounds. Table 2-4 lists literature XPS Ta A^^a values for other 

tantalum compounds. 
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Table 2-2. Atomic coordinates, isotropic and anisotropic displacement parameters for 
TasSel? and TasTel?. 

Ta3Sel7 

Atom X y z B(eq) 

Ta 0.8694(1) -0.8694 1/4 0.73(1) 
Se 0.0 0.0 0.3874(6) 0.8(2) 

1(1) 0.3333 0.6667 0.6444(5) 0.9(1) 
1(2) 0.8311(2) -0.8311 0.6145(3) 0.82(3) 
1(3) 0.4974(2) -0.4974 0.3635(3) 0.94(3) 

Atom u„ U22 U33 U12 U,3 U23 

Ta 0.0084(4) 0.0084 0.0099(7) 0.0034(7) 0.0005(6) -0.0005 
Se 0.006(2) 0.006 0.017(6) 0.003 0.0 0.0 

1(1) 0.009(1) 0.009 0.018(3) 0.004 0.0 0.0 
1(2) 0.0085(8) 0.0085 0.014(1) 0.004(1) 0.0000(6) -0.0000 
1(3) 0.0111(7) 0.0111 0.013(1) 0.005(1) 0.0001(6) -0.0001 

TasTelv 

Atom X y z B(eq) 

Ta 0.8680(1) -0.8680 1/4 0.58(1) 
Te 0 0 0.3996(4) 0.8(1) 

1(1) 1/3 2/3 0.6459(4) 0.8(1) 
1(2) 0.8298(2) -0.8298 0.6184(2) 0.72(2) 
1(3) 0.4979(2) -0.4979 0.3603(2) 0.87(5) 

Atom U,i U22 U33 U12 Ui3 U23 

Ta 0.0058(5) 0.0058 0.0105(6) 0.0028(7) -0.0001(4) 0.0001 
Te 0.008(2) 0.008 0.015(2) 0.004 0.0 0.0 

1(1) 0.009(2) 0.009 0.015(2) 0.005 0.0 0.0 
1(2) 0.005(1) 0.005 0.014(1) 0.000(1) -0.0009(6) 0.0009 
1(3) 0.0094(6) 0.0094 0.015(1) 0.006 0.0011(5) -0.0009 

(Uij =exp(-27cV^C/iih^ + + 2a»b»t/i2hk + 2a»c*C/,3hI + 2b*c*C/23kl)) 
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Table 2-3. Selected bond distances and angles in Ac-TajSelT and Ac-TasTel?. 

Bond (A) or Angle (deg) hc-TazSeh Ac-TasTel? 

Ta-Ta 2.955(2) 3.007(2) 
Ta-Q 2.528(7) 2.710(4) 
Ta-Il (n3-n 3.010(3) 3.017(3) 
Ta-I2 (^2-0 2.723(3) 2.736(2) 
Ta-I3 2.904(3) 2.900(2) 

Ta-Ta-Ta 60.00 60.00 
Ta-Q-Ta 71.5(2) 67.4(1) 
Ta-Ta-Q 54.3(1) 56.30(6) 
Ta-Il-Ta 99.2(1) 98.9(1) 
Ta-I2-Ta 65.86(9) 66.67(7) 
Ta-I3-Ta 104.4(1) 104.46(9) 
Ta-Ta-I3 142.21(7) 142.23(5) 

Table 2-4. Reported tantalum Afia binding energies (eV) measured by x-ray 
photoelectron spectroscopy 

Compound Binding Energy (eV) 
Ta4f7/2 

Ta metal 21.6-21.9 
(NEt4)2[Ta<iCl,2]Cl6 23.8 

[Ta<iCli2]Cl2(H20)4-4H20 25.8 
KTa04 25.9 
TaS2 26.7 

Ta205 26.7 
TaBrs 26.9 

KzTaF? 29.4 

/jc-TasSel? 23.4 
hc-T&sTeh 23.4 
A-TasTel? 23.4 

NbxTas-xTel? 23.4 
TasTeBr? 23.5 
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Magnetic measurements and composition 

Magnetic susceptibility measurements on powdered samples of many hand-picked 

small single crystals of both TasSel? and TasTel? display a weak paramagnetic signal, 

obeying the Curie-Weiss law (TasSel?, 0.95 ^b; TasTel?, 0.60 ^b)- Plots of x vs. T and 

of x"' vs. T for both compounds are shown if Figure 2-3 (Se) and Figure 2-4 (Te). In 

contrast, NbsSel; and Nb3Tel7 show the diamagnetic behavior expected from formally 

closed-shell sbc-electron metal clusters. The precise origin of this magnetic moment is 

unknown, but two possibilities readily present themselves: 1) An extrinsic paramagnetic 

impurity, or 2) lodine/chalcogen mixing or substitution is taking place, especially in the 

form of substitution of Se and Te by I on the cluster capping site. Such a substitution 

would create local paramagnetic "Tasis" regions, with seven-electron Tas clusters. An 

estimate of the concentration of such regions in the TasQI? framework (using a spin-only 

moment of 1.73 hb and diluting a pure Taslg sample with diamagnetic TasQI?) yields a 

"Taslg fraction" necessary to give rise to the observed moment. A hypothetical iodine-

substituted TasSel? sample would require a Taslg mole fraction of 0.55 (i.e. Ta3Seo .4sI7.35). 

For TasTel?, the required mole fraction is 0.65 (TasTeojsIres). To address this possibility, 

electron microprobe quantitative analysis was performed on several crystals of both 

compounds. The electron microprobe instrument is very similar to the SEM, but is 

equipped with a wavelength-dispersive spectrometer (WDS) rather than the energy-

dispersive (EDS) detector attached to the SEM. WDS is capable of much higher 

resolution of characteristic lines than is EDS, and therefore provides more accurate 

elemental compositions. This is an especially important point in a system containing 

tellurium and iodine, where the set of lines used for analysis (the La series) are very close 

together m energy (AE = 0.168 keV). The positions of these lines are: Tellurium La = 

3.763 keV, Iodine La = 3.931 keV. The microprobe instrument requires elemental 

standards for all elements involved for precise compositional analysis. Tantalum and 

iodine standards were not available in the microprobe facilities used, so a sample of TaJu 

served as the standard source for both Ta and 1. The Ta6li4 was prepared in the same lab 
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Figure 2-3. Magnetic susceptibility plot for //c-TaaSel?. 
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as the TasQI? samples, and its purity checked by Guinier diflfi^ction. For tellurium, the 

element was used, which was available at the microprobe facilities. 

The microprobe resuhs confirmed the 3-1-7 stoichiometry in both cases. Also, at 

least in the case of the selenide, if such Se/I mixing were taking place, a dramatic effect in 

the Hs-Q' atom thermal parameter should be observed, but this is not the case. 

The ...he... variant is one of six different stacking variants discovered so far in the 

NbsXg and M3QX7 systems. The reason for the occurrence of the ...he... modification 

over, for example, an ..ABAB... or ...h... anion layer stacking pattern, remains unclear. 

There would at first appear to be no great driving force for this particular stacking 

situation over any of the others, and the layered nature of these M3QX7 compounds might 

lead one to expect polymorphism in these layered systems as has been observed in the 

prototype compound Cdl2,''^' and in many other layered phases like TaSa and other 

early transition metal dichalcogenides. Indeed, both the ...he... and the ...h... variants have 

been observed in the NbsTel: system^®**'. In all the TasSel? reactions and re-heatings 

performed, though, only powders and crystals of the he-type have been observed. 

However, polymorphism apparently exists in the TasTel? system, as discussed next. 

A-TaaTelv 

Introduction and synthesis 

In addition to /ic-TasTel? discussed above, another crystalline phase is frequently 

observed in "TasTel?" reaction tubes. Large amounts of a material that is a highly 

reflective, well-faceted silver solid when crystalline, and dark grey when a powder, is 

found intermbced with (or sometimes instead of) //c-TasTel?. Crystals of this compound 

have a trigonal morphology, with (visually) perfectly equilateral triangular faces. An SEM 

micrograph of crystals of this phase is shown in Figure 2-5. Because of this morphology, 

and because complete characterization of the compound remains elusive, it will be referred 

to as "A-TasTel?". Generally the compound grows as densely intergrown large crystal 

chunks; occasionally loose, smaller crystals are found. The crystals grind with a lubricious 
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Figure 2-5. SEM micrograph of A-TasTel?. Crystals of A-TasTel? form with a trigonal 
prismatic shape, whereas crystals of Ac-TasTel? are hexagonal prismatic. 
The trigonal edges of the large crystallites in the center of the micrograph 
are approximately 125 |im. 



www.manaraa.com

56 

feel in the mortar, indicating a layered nature similar to Ac-TasTel?. The compound's 

(non-) reactivity with air and moisture are similar to that of Ac-TasTel?, remaining 

unaffected indefinitely, but rapidly disappearing in dilute HNO3. 

Generally, A-TasTel? is observed from longer and hotter (to ~575°C) TasTel? 

reactions. However, the occurrence of this compound is unpredictable: A-TasTel? will 

sometimes form under conditions that previously gave only the he- variant. Ac-TasTel? 

was first discovered from two-week reactions at 450°C. When these experimental 

conditions were reproduced in subsequent reactions, the result was a mixture of phases 

with Ac-TasTel? sometimes the majority, sometimes the minority phase. One reaction at 

540°C, yielded 100% A-TasTel?, but a repeat of this experiment gave both phases. 

Usually "TaaTelT" reactions produce both compounds simultaneously. Interestingly, upon 

annealing the he- and A-phases do not seem to interconvert: annealing of a sample of pure 

he- gives only he-, and vice versa. 

This unpredictability is most likely due to subtle, hard-to-control factors like the 

pressure in the reaction tube and temperature gradients and the effect they have upon 

similar (polymorphic?) compounds that differ only slightly in energy. 

To attempt to quantify how to make one compound and not the other, several 

tubes were loaded and heated at different temperatures, with and without temperature 

gradients, for varying lengths of time, and with varying amounts of reactants in the tube. 

The reason for varying tube loading amount was to determine the effect of pressure on the 

final product, i.e. does a high pressure of vapor-phase species in the tube favor one phase? 

Unfortunately, no predictable pattern could be identified fi'om these experiments. 

X-ray diffraction 

Guinier powder x-ray diffraction of both smaller "single"-like crystals as well as 

larger solid chunks of this compound immediately begins to show the characterization 

problems that plague better structural understanding of this phase. Many intense 

reflections in the powder pattern are very broad, over one degree m 20 wide. Thorough 

grinding, or grinding with glass dust added to better homogenize the sample, does not 
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seem to help the quality of the powder pattern. The powder pattern of A-TasTelv is 

shown in Figure 2-6, alongside the pattern for Ac-TasTel? for comparison. Some broad 

similarities to well-characterized 3-1-7 compounds exist here: the low-angle line (20 = 

12.8°), corresponding to the hexagonal a axis (100). Most telltale is the intense, fairly 

narrow line at 20 = 48°. This line is present in ail diffraction patterns of all 3-1-7 

compounds discovered, as well as the related compounds NbsXg. 

Further characterization 

Single crystal efforts A total of 35 single crystals of A-TasTel? have been 

examined on the Siemens P4 diffractometer. All exhibited very broad, asymmetric 

diffraction peaks, consistent with a poorly crystalline sample. However, the few crystals 

that have been good enough to measure diffraction positions have all corroborated one 

thmg: hexagonal symmetry with a c axis length of near 21 A, and an ^7 axis length of near 

3.8 A. On the crystal deemed best quality, 90 reflections were centered to gain the benefit 

of averaging many reflection angles to obtain better lattice constants. The lattice 

constants measured thusly by the diffractometer were 3.792(4) A and 20.90(1) A, 

hexagonal lattice. 

Composition: Electron microprobe microamlysis To determine the 

composition of this phase, electron microprobe analysis was performed on a sample of 

A-TasTelv, using the same preparative method described above for Ac-TasSel? and 

//c-TasTel?. 

The microprobe sample was in the form of a large aggregation of triangular-

faceted crystals, fi-om a reaction at 540°C. The identity and purity of the sample were 

checked by Guinier powder diffraction before sample preparation. Only lines 

corresponding to A-TasTel? were observed in a small piece of the microprobe sample (i.e., 

no hc-TiiTeh, Ta6li4, etc.). The A-TasTel? was mounted in epoxy, and, after setting, 

buffed until a smooth sample surface was achieved. A total of 144 sampling points in 

several different regions of separate crystallites were measured by the probe. The average 
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composition determined by the microprobe, with standard deviations, was 

"Ta3.ooTei,io(07)l6.90(08)" (Ta defined as 3.00). 

X-Ray phoioelectron spectroscopy Samples of pure A-TasTel? were finely 

powdered in the glove box, and transferred under inert atmosphere to a PHI 550 multi-

technique surface analyzer, to obtain x-ray photoelectron spectra. Information about the 

chemical states of the tantalum, tellurium and iodine atoms present could further link 

A-TasTel? with /jc-TasTel?, giving further hints as to its structure. The tantalum binding 

energy so obtained is tabulated in Table 2-4, with experimental data for /jc-TasTely as well 

as reference (literature) data for relevant tantalum compounds. The binding energy of 

tantalum corresponds to a highly reduced Ta, and agrees well with the data for 

/jc-TasTel?. Tellurium and iodine binding energies are the usual expected for Te^" and T 

species. 

Magnetic susceptibility A crystalline aggregation of A-TasTel? was glued inside 

a plastic straw in air for magnetic susceptibility measurements. Its susceptibility was 

measured using a SQUID magnetometer, firom 6 - 300 K at a field strength of 3 T. The 

results (Figure 2-7) show the same paramagnetic anomaly observed in Ac-TasTel?, the 

meaning of which has not been satisfactorily explained. A room temperature moment of 

1.03 BM was measured. 

Discussion 

From the characterization experiments, even considering the lack of a high-quality 

single crystal, a reasonable hypothesis is that this phase is indeed a layered TasTel? 

compound, more precisely a polymorph consisting of a new stacking of the archetypal 

J [TasTel?] slabs. The observed fact of a repeatable c axis length of ca. 21 A measured 

fi"om several different crystals corresponds nicely to a three-slab per unit cell polymorph. 
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Figure 2-7. Magnetic susceptibility data for A-TasTel?. 
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The broad diffraction peaks displayed by A-TasTel? point to disorder of some kind. Such 

disorder probably takes the form of misalignment of layered J [TasTel?] domains, with 

some rotated (or inverted) relative to other domams in such a way that no long-range 

order is present. 

Sulfide Iodides - Introduction 

No tantalum sulfide iodide has ever been reported. Investigations into niobium 

sulfide iodide chemistry, though, have yielded four phases: NbeSIg,^'^ NbsSI? (actually 

NbsSi-yly+y; 0 ^ ^ I),'''' o-NbsSI?and Nb7S2li9.^^' The latter three compounds are 

closely related to the M3QX7 family, and show the Nb-S-I system to be the most prolific 

compound-former of all NbsQX? systems. Investigation into the Ta-S-I system was 

similarly fi^iitful, yielding three phases, with indications of even more. 

/jc-TasSI? 

Synthesis 

Despite the readiness with which //c-NbsSI? forms, the corresponding tantalum 

compound was not as forthcoming. Numerous stoichiometric reactions of the elements in 

the temperature region 350°C to 575°C did yield small amounts Ac-TasSI?, but only as 

rare clumps of powder, usually constituting as minor a fi-action of the total product as ca. 

5%. Often, no /jc-TasSI? was found in a reaction tube at all. When the compound did 

form, it was observed to be a grey uniform polycrystalline material, which ground with a 

lubricating texture in the mortar. Generally, Ac-TasSI? formed as the "base" fi"om which 

grew dense forests of TaiSIn crystals (below). Ac-TasSI? was identified by its Guinier 

powder diffraction pattern, which is identical to that of Ac-NbsSI?. SEM micrographs of 

samples of this elusive phase are shown m Figure 2-8. This figure shows the rounded and 

smoothed comers of the hexagonal facets evident when the powder is magnified x330. 

The SEM instrument confirmed the presence of Ta, S and I in the sample. 
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Figure 2-8. SEM micrograph of //c-TajSI?, showing the rounded and smoothed comers 
of the hexagonal facets (x330). The SEM instrument confirmed the 
presence of Ta, S and I in small sampling regions of the material. 
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Structural characterization. X-ray powder diffraction 

After many attempts to improve yield and to grow crystals of /jc-TasSI? met with 

no success, the small amount of Ac-TasSI? available (ca. 0.25 g) was prepared for an x-ray 

powder diflraction experiment. The sample used was finely powdered in the glove box, 

and mounted onto a special cell designed for air-sensitive samples, in which a transparent 

thin plastic dome covers the flatbed sample stage and allows incident and diffracted x-ray 

beams to pass while protecting the sample fi-om exposure to air. Data collection 

parameters are given in Table 2-5. The powder diffraction pattern so collected of 

Ac-TasSIv is shown in Figure 2-9. /jc-NbsSIy was used as a structural model, and 

^-TasSI? could be successfully fit using this structural model. The observed and 

calculated profiles are shown in Figure 2-9, with the difference (Observed - Calculated) 

plotted below. A significant effect from preferred orientation was observed, as expected 

from highly anisotropic, low-dimensional compounds of a layered nature. Final R-factors 

are relatively high, R1 = 15.6% and wR = 18.1%, which may reflect the weak diffraction 

due to the small sample amount possible using the air-sensitive sample cell. Nevertheless, 

such R-factors are not unacceptable with x-ray data; they certainly do not indicate 

imposition of a grossly incorrect structure onto the data. However, detailed structural 

information such as bond distances and thermal parameters are certainly suspect from such 

data. Table 2-6 lists the lattice parameters and atomic coordinates output by this solution. 

Table 2-5. Powder diffraction collection parameters for Ac-TasSI?. 

Angular range 
Scan type 
# Data points collected 

Instrument 
Radiation 

Scintag XDS-2000 
CuKo, ^=1.5406 A 
10° ^20 ̂ 95= 

Step scan, step width = 0.02° 
4250 
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Figure 2-9. X-ray powder diffractogram for /ic-TaaSI?. /jc-NbaSI? was used as an initial model. 
The difference plot (exper. - calc.) is shown below the powder pattern. 
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Table 2-6. Lattice parameters and atomic coordinates for /rc-TasSI? as refined fi-om 
powder data. 

Lattice parameters: Space group P63mc, a = 7.5498(2) A, c = 13.5702(4) A 
Atom X y z 

Ta 0.8478 -X 0.2166 
S 0.0 0.0 0.3518 
11 1/3 2/3 0.5870 
12 0.8361 -0.8361 0.5781 
13 0.4963 -0.4963 0.3357 

Orthorhombic-TaiSh 

Synthesis 

By far the most abundant product formed fi^om stoichiometric TasSI? reactions is 

orthorhombic-TziSh (henceforth o-TasSIy). In fact, reactions often yield almost single 

phase oTasSI?. The compound forms glistening grey powders and reflective black 

crystals with a rectangular plate or bar morphology from reactions in the temperature 

range 350°C to 500°C. The most abundant crystals, however, were obtained from a 

reaction loaded according to the stoichiometry "TasSIj". (This composition and several 

others were loaded in an effort to synthesize Ta4SIn (below), before its structure and 

composition were solved.) Typical reaction durations are one to three weeks. oTasSI? 

was initially identified from Guinier powder diffraction, on a sample of powder from a 

450*'C reaction. The powder pattern perfectly matched that of oNbsSI?, indicating the 

two are isostructural. A sample of this polycrystalline material was analyzed using a JEOL 

6100 Scanning Electron Microscope, which verified the presence of Ta, S and I in the 

crystallites, and provided images. The rectangular bar or plate morphology of oTasSI? is 

plain from the SEM images shown in Figure 2-10. 
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(a) x800 image of polycrystalline o-TasSI?, showing the longer bar 
morphology evident in powder samples of the compound. 

(b) x350 image of a larger aggregation of o-TaaSI? crystals, where the flat 
plate morphology is evident. 

Figure 2-10. SEM images of onhorhombic-TzuSh. 
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Structural characterization 

Several of the abundant smgle ciystals from a TasSIs reaction and from subsequent 

TasSI? reactions were mounted on a Siemens P4 dififractometer for intensity data 

coUection. All reproduced the information described next. From several reflections taken 

from a rotation photograph, an initial unit cell in the primitive orthorhombic crystal 

system, with a = 10.006(2) A, 6 = 3.897(2) A, c = 17.828(4) A was indexed. This 

corresponds the the o-NbsSI? cell with b halved. Subsequently axial photographs ib axis) 

revealed weak interlayer spots indicating a doubling of the b axis was in order. Using the 

fractional search program on the Siemens (this routine searches for reflections with non-

integral hkl values; if such are found that cannot be reconciled with the current unit cell, 

the reflections are re-indexed) a weak and broad reflection with k = 0.5 was located, 

necessitating a doubling of b. Using this new cell (a = 10.006(2) A, b = 7.598(2) A, c = 

17.828(4) A), which is nearly identical to o-NbsSI?, several other reflections were found 

that would be inconsistent with the shorter b axis. However, all of these reflections were 

very weak (< 3 % of Inux), and also were noisy and broad, indications of problems to 

come. The primitive orthorhombic unit cell was refined using 45 reflections with 6° ^ 20 

^ 25°, and subsequently 1775 data were collected, to 20nuK = 50°. Azimuthal ("psi") 

scans were performed on four inequivalent reflections, and applied to the data. The scans 

showed a wide variation of intensities, with transmission ranges Tnux/Tmin = 1.00/0.05, due 

to the flat bar morphology of the crystal. Of the 1775 collected data, 1207 were unique, 

and merged to Ri* = 0.0643. At this point, severe problems became apparent. 

Systematic absence violations inconsistent with a centered lattice confirmed the primitive 

lattice type, and intensity statistics favored a centrosymmetric unit cell. However, the 

SHELX program could find no acceptable space group, due to the presence of systematic 

absence violations of above its tolerances. Inputting the space group of o-NbsSI? (Pmmn), 

and solving the structure using direct methods produced atomic positions that 

corresponded exactly to the the oNbaSI? structure. Refining these positions yields the 

expected structure and bond distances and angles, but with unreasonable (negative) 

thermal motion ellipsoids, and high R-factors: R1 = 12% and wR2 = 35%. No 
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manipulation of the structure was found to remedy this problem. The same problems were 

observed from a total of twelve crystals grown from several independent reactions, ruling 

out an anomalous bad crystal. Interestingly, collecting a data set with b halved leads to a 

solution with R1 = 6%, but with too-short bond distances (Ta-Ta 0.8 A), indicating a 

different (larger) unit cell. 

Ta4SIn 

Synthesis 

Ta4SIii was first observed as an abundant (ca. 50% total product) side product 

from reactions of the elements in the ratio 3Ta;S:7I at 450°C in sealed, evacuated 

borosilicate glass tubes, designed to grow TasSI? phases. After being unable to identify 

the compound from its Guinier powder diffraction pattern, a single crystal was selected 

and its structure solved (see below), yielding the composition "TajSIn". Tubes were then 

loaded at this stoichiometry, and heated at various temperatures to determine optimum 

conditions. Ta4SIii is best made by stoichiometric reaction of the elements at 430°C, for a 

duration of two weeks. Growth of the compound is sensitive to temperature gradients in 

the tube: highest (nearly quantitative) yields were obtained when the tube furnace was 

packed tightly with asbestos, to smooth out uneven temperature regions as much as 

possible. Heating a Ta»SIn mixture with an imposed temperature gradient leads to a 

mbcture of phases, including hexagonal and orthorhombic TasSI? (below), and Ta<5li4 in 

addition to Ta4SIu. Reagents used were: Tantalum "turnings" (Aesar, 99.99%, cleaned 

with an HF/HNO3/H2SO4 solution to remove surface impurities, then rinsed with ethanol 

and dried in vacuo at 500°C), sulfur powder (Alfa, 99.9%, sublimed twice before use), and 

iodine (Alfa, 99.9%, resubUmed). All purified reagents and products were handled in an 

Ar-fiUed glove box. 

Ta4SIn crystallizes as long silver bars, which often aggregate in dense thickets, 

sprouting outward from a common point. Crystals are brittle and splinter easily along the 

long axis. Ta4SIii is sensitive to oxygen and moisture, decomposing to an uncharacterized 

white powder after several days. The compound appears to exist (in the absence of 
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oxygen, of course) up to temperatures of approximately 550°C, above which only Ta«Ii4, 

Tals and TaSa are observed by x-ray powder diffraction. 

Characterization 

Scanning electron microscopy Verification of the presence of tantalum, sulfur 

and iodine in multiple single crystal samples of Ta4SIu was carried out using a JEOL 6100 

Scanning Electron Microscope. Magnified images of Ta4SIii crystals are shown in Figure 

2-11. 

X-Ray Photoelectron Spectroscopy XPS spectra were measured using a PHI 

550 multi-technique surface analyzer. Samples were prepared by finely powdering several 

larger single crystals of Ta4SIii in the glove box immediately before use. The samples 

were pressed onto indium foil in the glove box, and transferred to the XPS instrument 

under inert atmosphere. Binding energies were corrected for charging by using the C Is 

peak of adventitious carbon (284.8 eV)''^^ as an internal reference. However, no 

significant charging effects were observed, as C Is always appeared at 284.8 eV. 

Additionally, large intact single crystals were mounted, and the surface etched by 

sputtered argon ions to removed any surface impurities introduced during handling, and 

probe the presumably pristine interior of the sample. 

Magnetic Susceptibility Magnetic susceptibility measurements were performed 

with a SQUID magnetometer. Aggregations of Ta4SIii bars were loaded and sealed under 

inert atmosphere in fijsed silica tubes. The samples were kept in place by means of two 

tightly fitting fijsed silica rods on either side of the sample. The samples were chosen so 

that only larger single crystal aggregations were used, to avoid unwanted powder 

impurities and minimize the surface area susceptible to oxidation. Measurements were 

taken fi-om 4 K to 300 K, at a field strength of 3T. The resuhs are shown in Figure 2-12. 

A room temperature moment of 1.53 BM was measured, reproducible over three separate 

runs. 
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(a) SEM image of a typical spiny ball formation of TaaSIu crystals. 

(b) SEM image of a fan of Ta4SIu crystals with a common nucleation point. 

Figure 2-11. SEM images of Ta4SIu. 
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(c) Rectangular bar morphology of Ta4SI 11 crystals. 

(d) Higher magnification of the end of a crystal. 

Figure 2-11 (continued). SEM images of Ta4SIii. 
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Figure 2-12. Magnetic susceptibility data for Ta4SIii. A curve fit for T > 100 K gives jieir = 1.53 BM. 
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Crystallogrcq)hy 

A small silver bar (0.02 x 0.03 x 0.12 mm) was sealed inside a glass capillary under 

argon, and mounted on a Siemens P4 diflractometer. A primitive orthorhombic unit cell 

with dimensions a = 16.135(3) A, 6 = 3.813(1) A and c = 8.131(2) A was indexed and 

refined on the basis of 45 reflections in the range 6° ^ 20 ^ 25°. Axial photographs 

confirmed these lattice metrics. 2629 reflections were collected to 20aux = 55°, of which 

685 were unique, 533 unique observed (I > 2oI), and = 0.0498. An empirical 

absorption correction was applied to the data, using the average of sbc complete "psi-

scans" measured in well-separated regions of reciprocal space. The structure was solved 

using direct methods (SHELX-86 ^®^') and refined with the SHELXL-93 crystallographic 

package.^ Complete data collection details, atomic positions and isotropic thermal 

parameters, and anisotropic displacement factors are given in Tables 2-7, 2-8, and 2-9, 

respectively. 

Structure description 

Figure 2-13 shows Ta4SIii viewed parallel to the short b axis. The compound can 

be viewed as a close-packed structure similar to the M3QX7 compounds, but with a 

different metaJ atom distribution. In Ta4SIn, approximately close-packed layers of 

composition "Sin" stack parallel to the (302) family of lattice planes in cubic close-packed 

((...ABC...) or (...c...)) fashion, at an angle of 37.25° from the a axis. However, instead of 

a pattern of interstitial site occupation by the metal atoms that generates parallel slabs, as 

in the layered M3QX7 compounds, in Ta4SIu the occupation of these close-packed layer 

holes defines an undulating sheet structure with a period of 16.135 A. Ta4SIn can still be 

viewed as a "layered" structure, since the undulating Ta4SIu layers are separated by a van 

der Waals gap. 

The nature of the distibution of tantalum atoms within the layers is not 

straightforward. The structure solution gives rise to two distinct tantalum positions. Full 

occupation of these sites would lead to butterfly Ta4 clusters that bend at the turns of the 
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Table 2-7. Summary of crystallographic data for TatSIn. 

Formula weight 2151.76 
Crystal system Orthorhombic 
Space group Pmmn (No. 59) 
Color of crystal silver 
Dimensions of crystal (mm) 0.02 x 0.03 x 0.12 
Lattice parameters (A) 

a 16.135(3) 
h 3.813(1) 
c 8.131(2) 

Vol. (A^) 500.2(2) 
Z 1 
f4ic (g cm'^) 7.143 

Diflfractometer Siemens P4 
Radiation Mo Kcx, X = 0.71071 A 
Linear absorption coeflBcient 38.854 mm"' 
Transmission ranges 0.96 - 0.57 
Temperature of data collection 23°C 
Scan method 20-co scan 
Range in hkl -20^ 20 

-4^/ t^4 
-10^/^ 10 

20m« (deg) 55.00 
Number refl. measured 2629 

No. unique 685 
No. unique observed (I > 2CTI) 533 

R(int) 0.0498 
No. parameters refined 38 
Difference map (eVA^) 

Largest peak 2.15 
Largest hole -2.16 

Residuals' 
R (observed, all data) 0.0322, 0.0503 
Rw (observed, all data) 0.0695, 0.0762 

GoF (all data) 1.054 

' R = SIlFol - |Fc||/S|Fo|; R, = [2w(|Fo| - |Fc|)'/Sw(Fo)']'''; w = l/a'CFo). 
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Table 2-8. Atomic positions, site occupation factors (sof), and Ueq for TatSIn. 

Atom X y z sof Uc 

Tal 3/4 0.8568(3) 0.68160(13) 0.510 0.0116(4) 
Ta2 0.60860(7) 1/4 0.87665(14) 0.517 0.0127(4) 
11 0.58153(6) 3/4 0.63999(13) 1.0 0.0181(3) 
12 3/4 1/4 0.4229(2) 1.0 0.0282(5) 
13 0.58430(7) 3/4 0.12070(13) 1.0 0.0234(3) 
14 1/4 3/4 0.1050(4) 0.534 0.0127(11) 
S 1/4 3/4 -0.9311(32) 0.466 0.0127(11) 

Table 2-9. Anisotropic displacement factors for TatSIn. 14 and S were refined as 
a split position with the constraint Uy (14) = Ujj (S). 

Atom Un U22 U33 U23 U,3 Ua 

Tal 0.0125(5) 0.0096(6) 0.0127(5) 0.0002(4) 0.0 0.0 
Ta2 0.0098(5) 0.0140(7) 0.0143(6) 0.0 0.0005(4) 0.0 
11 0.0152(5) 0.0168(5) 0.0223(6) 0.0 0.0002(4) 0.0 
12 0.0215(7) 0.0116(8) 0.0514(11) 0.0 0.0 0.0 
D 0.0328(6) 0.0175(6) 0.0199(5) 0.0 0.0080(4) 0.0 
14 0.0160(11) 0.0123(12) 0.0101(3) 0.0 0.0 0.0 
S 0.0160(11) 0.0123(12) 0.0101(3) 0.0 0.0 0.0 

Uij = exp(-27c^(a»^C/„h^ + b*^U22k  ̂+ c»'C/33l^ + 2a»b*C/i2hk + 2a»c*C/,3hI + 2b*c»C/23kl)) 
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Tantalum © Sulfur O Iodine 

Figure 2-13. Projection of the structure of Ta4SIi i, viewed down the b axis. The 
approximately close-packed mixed anion layers can be viewed as stacking 
parallel to the (302) family of lattice planes (horizontal in the figure). The 
occupation of octahedral interstices between the cp layers defines an 
undulating layer structure. 
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undulating anion layers. However, the site occupation factors of both metal sites each 

refine to near 50%. An additional complication is the atomic position that resides inside 

the cradle or elbow of the apparent bent cluster, and seemingly "bridges" all four metals. 

This site refines as a 50:50 sulfiir-iodine split position. Figure 2-14 shows a [001] view of 

what the crystallographic experiment sees, which is an average over the entire crystal. 

This Figure also includes a view of the apparent butterfly cluster, showing the split S/I 

position. The question now becomes how the metal atoms are distributed throughout the 

structure, and how this correlates with the split S/I position. For the tantalum atoms, two 

feasible possibilities spring to mind immediately; 1) 4-member "butterfly" clusters of 

tantalum disordered throughout the structure, or 2) a mixture of Tas clusters and isolated 

Ta atoms. The solution to this problem cannot be conclusively determined based on the 

x-ray diffraction experiment, which measures average electron density over the entire 

crystal and cannot elucidate the precise local situation; independent characterization 

methods are required. 

X-ray photoelectron spectroscopy 

To help clarify more details about the structure, X-ray photoelectron spectroscopy 

spectra were measured. The XPS spectrum of any tantalum atom produces a doublet 

signal, corresponding to the Aiia Oower binding energy) and (higher binding energy). 

These peaks are always separated by 1.91 eV. This constant separation facilitates 

deconvolution of overlapping peaks due to non-equivalent atoms. The reported binding 

energies are for the Ta Afna peaks. The Ta^SIn spectrum showed two peaks, at 23.8 eV 

and 26.3 eV, suggesting two different oxidation states for Ta. The Ta binding energy 

of 23.8 eV indicates a highly reduced metal center, and suggests the presence of triangular 

clusters having an average oxidation state of +3. As reported earlier in Chapter Two, the 

binding energies of Ta in the Tas cluster containing species Ac-TasSel? and Ac-TasTel? are 

23.4 eV. For comparison, the literature XPS values for tantalum in other compounds is 

given in Table 2-4. 
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(a) [001 ] view of the crystallographically averaged structure of Ta4SI 11; small black 
circles, Ta; large grey circles, the S/I split position, large open circles, I. 

Tal Tal 

Ta2 

(b) The apparent butterfly cluster that results from the averaged Ta4SIii solution. 
Distances are: Tal-Ta2, 3.157(2) A, Ta2-Ta2, 2.999(3) A. Ta2-S, 2.328(2) A 
and Tal-S, 2.524(2) A. Ta-I distances range from 2.7 to 3.2 A. 

Figure 2-14. Structural features of the crystallographically averaged structure of 
Ta4SIii. 
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It is tempting to assign the B.E. peaks at 26.3 eV to oxygen contamination of the 

sample, and not to a mixed-valence eflfect. Oxygen contamination of the crystalline 

samples used would be limited to surface oxidation though, since all products were 

handled under inert atmosphere. To explore this possibility, samples of single crystals 

were etched in the XPS instrument by sputtering with Ar ions. Etching removes 

contaminated surface layers, and exposes the unoxidized, presumably pristine interior of 

the sample. After etching, the peak at 26.3 eV persisted, which suggests this peak is 

characteristic of the sample, and not due to surface oxidation. Additionally, the Ta 

peak of Ta205 appears at slightly higher binding energy (26.7 eV, Table 2-4). Figure 2-15 

shows the deconvoluted analysis of the peaks, after etching. This Figure shows the total 

Ta signal (solid line) and the constituent peaks from the two different tantalum atoms. 

The reference Ta 4^^a peaks from the two distinct tantalum atoms are shown as the dotted 

line, with their attendant Ta peaks at +1.91 eV as the long-dashed curve. 

The two binding energies suggest a mixture of Tas trinuclear clusters and tantalum 

atoms in a higher oxidation state. It is not likely that the two peaks result from chemical 

inequivalencies within the trinuclear cluster itself (local symmetry C,), as the 2.8 eV 

difference between the two is much too large to support this contention. The distortion 

of the Tas clusters away from perfect equilateral geometry is moderate, with Ta-Ta 

distances of 3.157(2) A and 2.999(2) A, and angles of 56.70(1)° and 61.65(1)°. A 

formulation of Ta4SIn consistent with the crystallographic, magnetic, and x-ray 

photoelectron spectroscopic data is "(Ta^'^3(Ta''"^(S^')(r)n"; a 1:1 mixture of Tas clusters 

and isolated tantalum centers m the +4 oxidation state. These two metal units must be 

randomly distributed throughout the three-dimensional structure to give the apparent 

average structure solved from the x-ray data. While it is possible (but unverifiable) that 

some kind of ordering of the trinuclear clusters and isolated atoms exists within each 

undulating layer, certainly no ordering or registry can exist between the TatSIn layers, 

otherwise a different symmetry or unit cell size would be found. 

The assignment of the split sulfiir-iodine position goes as follows: When a 

trinuclear cluster occurs, sulfur is the capping atom. Conversely then, when the single 
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Figure 2-15. Deconvoluted analysis of the Ta 4f7/2 peaks, after etching. The total (sum) Ta signal is plotted as the solid 
curve. The reference Ta Afya peaks from the two different tantalum atoms (23.8 eV and 26.3 eV) are shown as 
the dotted lines, and the Ta Af^a peaks at +1.91 eV from Afm. as the long-dashed curve. 
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tantalum atom occurs, it is surrounded by a coordination environment of entirely iodine. 

This assignment accounts for the amount of each species present, as well as being the 

most reasonable placement of the sulfur in light of the behavior of the chalcogen in the 

similar compounds TasQX?; that is, always capping a trinuclear cluster. Figure 2-16 

shows the metal coordmation environments in Ta4SIu, and lists the important bond 

distances. This assignment, though, requires a short Ta-I4 bond length of 2.324(2) A, 

coordinating the Ta"*"" ions. However, with all the disorder and fractional occupancy 

present throughout the structure, such a distance could be a false artefact forced upon the 

structure as a consequence of averaging. Examining the anisotropic displacement 

parameters listed in Table 2-9, no unusual motion is manifest in the S or 14 Uy values. In 

fact, the only noticeably large Uij value is U33 for 12, apparently elongated into the van der 

Waals gap. 

Extended Huckel calculations were carried out on three models (illustrated in 

Figure 2-17) of the Ta4SIii structure, using atomic orbital parameters given in Table 2-10. 

The purpose of these calculations was to determine the total energies of various metal 

atom distribution possibilities. Due to the disorder, all atomic positions within the unit cell 

needed to be specified. The three models used in the calculations follow the guidelines for 

possible tantalum atom distribution enumerated earlier (p. 77): 

1. "Butterfly" Ta4 clusters, distributed over the three-dimensional structure as shown in 

Figure 2-17 (a). Along the [010] direction of each undulating TaiSIu layer, a Ta4 

cluster is fully occupied, with the adjacent Ta4 set unoccupied. For this model, the 

sulfur was positioned in the crook of the cluster, coordinated to all four Ta atoms. 

2. A 50:50 mixture of Tas clusters and isolated Ta atoms. There are two possible unique 

distributions in this case: (i) such that the Tas clusters are all parallel throughout the 

structure (along [010]), or (ii) the Tas clusters alternate orientation, following the 

undulating layers (Figure 2-17 (b)). 
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Distances in the TasSIn cluster (A) 

.13 

.Tal 

Tal-Tal 
Tal-Ta2 

Tal-S 
Ta2-S 

Il-Tal 
11-Ta2 
12-Tal 
13-Ta2 
14-Tal 

2.999(2) 
3.157(2) 

2.52(2) 
2.324(5) 

2.769(1) 
2.744(1) 
3.127(2), 2.583(2) 
2.780(1), 3.112(2) 
2.892(2) 

(a) The Tas cluster and its coordination environment. 

Bond Distances (A) 

Ta2-Ta2 
Il-Ta2 
13-Ta2 

14-Ta2 

4.467(2) 
2.744(1) 
2.780(1) 

2.324(5) 

(b) Coordination environment around the Ta*"^ centers. 

Figure 2-16. Tantalum coordination environments in Ta4SIn. (a) Surrounding the Tas 
cluster, (b) Surrounding the isolated Ta atoms. 
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The three model TajSIn structures used in Extended Hilckel calculations. Left column. [010] view. 
Right column: [001] view. Structures (b) and (c) were determined to have nearly equivalent total 
energies, and both were 0.27 eV (per formula unit) lower in energy than the upper model structure. 
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Table 2-10. Atomic orbital parameters used in Ta4SIu Extended Huckel calculations. 

Atom Orbital Hu (eV) c. c, C2 C2 

Ta 
6s 
6p 
5d 

-8.96 
-4.99 
-9.83 

2.28 
2.24 
4.76 0.6104 1.94 0.6104 

S 3s 
3p 

-20.00 
-13.30 

2.12 
1.83 

I 5s 
5P 

-18.00 
-12.72 

2.66 
2.32 

The calculations showed a significant energetic separation of the two broad cases: 

The total energies of the two Tas + Ta cases were found to be quite similar, differing by 

only 0.05 eV (per formula unit) from one another. However, both of these cases were 

clearly stabilized relative to the butterfly clusters. The total energy of this possibility was 

found to be +0.27 eV relative to the trinuclear and isolated atom distribution. 

Ta4SIii bears a close structural resemblance to oTasSI?, which, although poorly 

characterized, is almost certainly isostructural with oNbaSI? (see Chapter 1). Both 

structures contain undulating mbced sulfur-iodine layers, with the metal atoms defining a 

similar undulating layer structure. Within both undulating layer structures, Tas clusters are 

capped by a sulfur atom, generating local TasXu type clusters. In o-TasSI?, the Tas 

cluster coordination environment involves an additional sulfur atom; this second 

coordinating S provides a bridge to another Tas cluster. Coordination of the Tas units is 

then "Ta3S2lu". In Ta4SIu, the sulfur atom is not shared between separate clusters, and 

the Tas coordination is "TaaSIn". Because of these structural similarities, and considering 

the crystallographic difficulties encountered in the solutions of both structures, one might 

raise the possibility of whether Ta4SIii and oTasSI? may be the same compound, but 

somehow a disorder mechanism falsely (but reproducibly) produces two different 

solutions. The Guinier x-ray powder diffraction patterns of Ta4SIn and o-TasSI? are 

reproduced in Figure 2-18. (These are actually theoretical patterns generated from single 
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Figure 2-18. Guinier powder diffraction patterns of (a) Ta»SIii and (b) o-TasSI?. 
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crystal data (in the case of oTasSI?, the o-NbsSI? atomic positions were used), to take 

advantage of the greater clarity of these plots compared to Guinier photographic filmstrips 

reproduced onto paper. The positions and intensities of the lines in these theoretical 

patterns exacdy match the experimental patterns.) Consideration of these powder 

patterns, which eliminate the troublemaking effects of multiply-crystalline samples, 

definitely establishes the uniqueness of the two phases. It is clear that the patterns are 

significantly different, reflecting the different structures that emerge fi-om the single crystal 

work. 

The available data support the contention of a mixed-valent, disordered sulfide 

iodide. The problem of the short Ta-I4 distance remains, and is a disturbing one. Other 

attempts at characterizing the sample have been attempted: Various mass spectrometry 

techniques (electron impact ionization, chemical ionization in positive and negative ion 

modes) have been employed, but the compound is not sufficiently volatile to produce any 

vapor-phase fi-agments that could illuminate structural details. The compound is not 

soluble in anything, and therefore other ionization techniques (electrospray, etc.) cannot 

be used. The potential of a superstructure undetected by conventional diffractometer 

technique exists. In particular, the split position might be "fi-ozen" or resolved into one 

position, giving rise to an ordered structure. Several attempts at cooling crystals to -80°C, 

though, did not reveal any indication of a different unit cell. 
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CHAPTER THREE 

SYNTHESIS AND CHARACTERIZATION OF THREE NEW 
TANTALUM CHALCOGENIDE BROMIDES 

Background: NbsQBry (Q = S, Se, Te) 

NbsTeBr?, NbsSeBr?, and NbsSBr? have all been reported. NbsTeBr?, the first 

M3QX7 compound to be made, was prepared in 1988 by Furuseth and Honle fi*om a 

reaction of the elements at 800°C for two weeks. Solution of the structure was not 

straightforward, and required analysis of data fi-om a twinned crystal. The structure has 

already been described and illustrated in Chapter One, Figure 1-17. NbsSeBr? and 

NbsSBr? can also be synthesized by stoichiometric combination of the elements at elevated 

(ca. 800°C) temperature. Both adopt the NbsSBr? type, which is the simplest M3QX7 

structure type. Details of this structure can also be found in Chapter One, Figure 1-14. 

Tantalum chalcogenide bromides, TasQBry (Q = S, Se, Te) 

General note on synthesis of TasQBr? 

All reactions were done by stoichiometric combination of the elements, according to 

Equation (1): 

3 Ta + Q + 7/2 Brj = TasQBrT (1) 

For all syntheses, the following reagents were used: Tantalum (foil or "turnings", 

99.95%, Aesar). The tantalum was cut into manageable strips (usually about 1-2 cm long 

by 1-5 mm wide) and washed with a concentrated HF/HNO3/H2SO4 solution to remove 

surface impurities, then dried in vacuo at 1000°C. Sulfur (Alfa), selenium (Alfa), and 

tellurium (Alfa) were all sublimed and then powdered under an inert atmosphere before 

use. The Ta strips and the chalcogen powder were loaded into the reaction ampoule 

(either pyrex or fused silica, depending on the reaction temperature to be used) in an 
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Ar-fiUed glove box, then taken out of the box and attached to a vacuum line for transfer of 

Bromine. Br2 (Fisher) was deoxygenated by several freeze-pump-thaw cycles before 

distilling onto P2O5 for drying and storage - subsequently the appropriate amount of Br2 

was vacuum-transferred from its volumetric storage tube directly into the reaction 

ampoule containing Ta and Q. This mixture was then frozen solid with liquid nitrogen, 

evacuated to ca. 10"^ torr, and flame-sealed under vacuum. The tubes were then placed in 

horizontal tube furnaces and heated to the desired reaction conditions. 

TasTeBr? 

Synthesis 

TaaTeBr? can be synthesized according to Equation (1) at temperatures of up to 

550°C. Complete conversion of starting materials is accomplished by heating at 

temperatures of 500 to 550°C for a duration of two weeks. Lower temperatures or 

shorter reaction times leave unreacted tantalum metal along with TaTej and copious 

amounts of Ta^Bru and TaBrs. At the proper conditions, crystalline TasTeBr? grows 

profusely, forming black, reflective, hexagonal-shaped crystals with a plate morphology 

which are usually massed together as densely intergrown bunches. Generally, these large 

aggregations are found transported to the far end of the reaction tube. In fact, TasTeBr? 

can be purified by heating powdered samples in a temperature gradient in evacuated tubes. 

Various gradients have been found to transport the pure solid, but heating in a gradient of 

550 - 425°C, yielded excellent transport (visual estimate of transported pure compound 

yield: 75%). The crystal bunches are transported to the cooler end of the tube, though 

polycrystalline compound may still be present at the hot end. TasTeBr? appears to be 

stable in air for at least several months, though after such time surfaces of crystals are no 

longer mirror-smooth, but dull and textured. It is unaffected by water and by weak, non-

oxidizing acids, but is quickly consumed in even dilute HNO3. Crystals of TasTeBr? grind 

to a dark grey, possibly red-brown-tinged powder with a lubricating feel in the mortar, 

indicating the expected layered structure. 
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Characterization 

Scanning electron microscopy A sample of black crystals was mounted on a 

JEOL 6100 scanning electron microscope, for compositional analysis and to obtain 

magnified images that might reveal morphological information. Energy Dispersive 

Analysis (EDS) clearly showed the presence of only Ta, Te, and Br in several different 

sampled crystals. The SEM also provided images illustrating the poorly ciystalline nature 

of TasTeBr?. Figure 3-1 shows an SEM micrograph of a sample of crystalline TasTeBr?, 

showing curving, niffling, twisting, and separation of sections within individual TasTeBr? 

crystals. Such severe stacking faults are usually an indication that proper crystal growing 

conditions have not been found yet, and that the compound may be crystallizing too fast. 

To find optimum crystal-growing conditions, samples of pre-made TasTeBrv were 

subjected to further heating, under chemical transport conditions. Samples of pure 

TasTeBr? were ground to fine powders under inert atmosphere, and sealed under vacuum 

in glass tubes. In Appendbc A is a comprehensive summary of all the heating conditions 

employed in these reaction and re-heating experiments, and the results in each case. Even 

extended heating through a minimal temperature gradient (e.g., six weeks at 505 - 495°C) 

failed to yield well-crystallized material, though the same conditions produced excellent 

crystals of TasSBr?. 

This poorly crystalline nature illustrated by the SEM micrographs of course also 

manifests itself in the lack of single crystals of suitable quality for x-ray diffraction, and is 

echoed in the report of NbsTeBr?, where a twinned crystal had to be used. Examination of 

more than 50 single crystals of TaaTeBr? failed to turn up even one collectable crystal due 

to very broad, asymmetric diffraction peaks. Several crystals were nonetheless indexed 

(but not collected) in the hexagonal system, and gave axis lengths of a = 7.15 A, and c = 

13.17 A. These cell parameters are very approximate, though, due to the difficulty in 

precisely centering diffraction peaks sometimes as broad as 1.5° in omega. However, they 

are quite similar to the reported NbsTeBr? lattice constants of a = 7.174 A and c = 13.166 

A, indicating TasTeBr? may be isostructural with Nb3TeBr7. 
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(a) x330 image. 

Figure 3-1. SEM images of TasTeBr? showing the intergrowth, bending and 
misstacking responsible for the poor quality of all TaaTeBrv crystals 
examined. 
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X-ray powder diffraction The x-ray powder diflB^ctogram of TasTeBr? is shown 

in Figure 3-2. 

Magnetic susceptibility Magnetic susceptibility measurements were made on a 

large crystalline chunk of TasTeBr?, which was glued inside a plastic straw in air. 

Measurements were made with a SQUID magnetometer operating at a field strength of 3 

T, at temperatures of 6 to 300 K. Figure 3-3 shows the magnetic data. A relatively large 

paramagnetic signal was observed (room temperature moment, |i,^= 1.41 BM). 
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Figure 3 -2. The x-ray powder diffraction pattern of TasTeBr?. 
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TasSeBr? 

Synthesis 

The conditions for preparation of TaaSeBry are quite similar to those for TasTeBrv. 

The compound forms at temperatures of up to ca. 550°C, above which it is unstable with 

respect to TaeBris, TaBrj and TaSez. Single-phase yield has not been achieved, and 

TasSeBr? is always accompanied by some Ta^Bris and TaBrs. TasSeBr? does not form 

crystals as readily as TasTeBr? does, but remains in largest amount as a powder or thin 

coating of the tube wall. Crystals can be grown by heating premade TaaSeBr? (or, more 

precisely, mixed powders of TasSeBr?, Ta«Bri5 and TaBrs) in a temperature gradient of 

550 - 425°C for approximately two weeks. The yield of crystals thus transported in still 

quite small (visual estimate ~ 5 %). A summary of the results of all TaaSeBr? reactions 

and re-heating of pre-reacted powders is given in Appendix A. 

TasSeBr? forms a dark grey powder which grinds with a lubricating feel in the 

mortar, indicative of a layered structure. The Guinier powder diffraction pattern of 

TasSeBry is quite similar to that of TasSBr? (below), but with line positions shifted toward 

smaller two-theta (larger i/-spacing) by about a degree. The magnitude of the line position 

shift corresponds with what is expected when replacing S with Se in a similar structure. A 

shift of this magnitude is also observed in the series NbsSI? / NbsSel?. Crystalline 

TasSeBr? appears to be stable in air for a period of at least several months. Further tests 

of reactivity could not be performed due to lack of pure sample. 

Characterization 

Scanning electron microscopy A sample of crystalline TajSeBr? was analyzed 

by EDS using a JEOL scanning electron microscope. Figure 3-4 shows two SEM 

micrographs of TasSeBr?: (a) is an image of a typical bunch of crystals, and (b) is a 

higher magnification of a side of one of these crystals. EDS identified Ta, Se, and Br to 

be the only elements present in the samples. There is the question of ambiguity here 

though, since the characteristic lines of Se(Loc, 1.65 keV) and Br (La, 1.78 keV) are 
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(a) x600 image of an aggregation of Ta3SeBr7 crystallites (approximate 
average size 10-20 [im x 30-40 |am). 

(b) 

Figure 3-4. 

Higher (xl600) magnification of a rough side of a crystallite. 

SEM images of TasSeBr?. 
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separated by only 0.13 keV on the energy scale. However, the SEM instrument could 

resolve a small shoulder appearing on the side of the large Br peaks, clearly due to 

selenium. In contrast to TasTeBr?, which forms large, sprawling plate crystals, crystalline 

TasSeBr? grows as rough columnar pieces, with a trigonal morphology. Like TasTeBr?, 

good single crystals of TasSeBr? are not forthcoming. The compound doesn't grow 

crystals readily to begin with, and of the twenty or so examined, all exhibited very broad 

and noisy diffraction maxima, or even powder rings in the rotation photographs. This is 

again reminiscent of NbaSeBr?, whose structure was solved from powder diffraction data, 

presumably due to lack of a suitable single crystal. Comparison of the experimental 

powder pattern of TasSeBr? to the pattern generated from the reported data for NbsSeBr? 

opens the possibility (probability?) that the two compounds are isostructural. On the 

other hand, TasSBr? is not isostructural with NbsSBr?, but their structures are so similar 

that, in practice, their powder patterns are indistinguishable. A similar possibility exists, 

then for TasSeBr? (and for TasTeBr?). 

The reflisal of TaaSeBr? and TasTeBr? to grow suitable single crystals is puzzling, 

and underscores how little is known about crystal nucleation mechanisms in these systems. 

TasSBr? 

Synthesis 

Polycrystalline TasSBr? was synthesized by stoichiometric reaction of the elements 

in evacuated, flame-dried pyrex tubes at 550°C for two weeks, according to Equation (1). 

The reaction tubes (typically 10cm x 8mm i.d.) were then placed in horizontal tube 

furnaces packed with asbestos to smooth out temperature gradients, and heated to 550°C 

for 12 days. The product from this step was a coarse-textured black solid that ground 

with a lubricating feel, and a small amount of orange TaBrs. Subsequently, the black solid 

was ground to a fine powder in an Ar-filled glove box and loaded into another pyrex tube, 

evacuated and sealed, and placed in a 505-495°C temperature gradient. After sbc weeks, 

several small clumps of black, reflective, dagger-shaped crystals were found throughout 

the tube, but predominantly at the hot end. The majority of the product remained 
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powdered. Crystals of TasSBr? appear to be air- and moisture-stable for at least several 

weeks. SEM micrographs of TasSBr? crystals are shown in Figure 3-5. 

Structure solution 

A small black dagger crystal was epoxied in air onto a thin glass fiber, and, after an 

initial crystal-quality check using the Weissenberg technique, aligned on a Siemens P4 

diffractometer. The initial unit cell and symmetry of TajSBr? were determined on the basis 

of sbc reflections taken from a rotation photograph. Subsequently 40 reflections of 

varying intensities located between 22° and 25° in 20 were used to refine the cell. Axial 

photographs were taken of all three axes to verify the unit cell lengths. Due to its small 

size, the crystal was then moved to a Rigaku AFC6R diflfractometer to take advantage of 

the greater intensity offered by the rotating anode instrument. 1118 data were collected 

with no centering restrictions, of which 509 were observed (I > 3oi). Systematic absences 

confirmed a C-centered lattice and positively ruled out a c-glide operation, leaving three 

space groups; C2, C2/m, and Cm. Of these, C2/m was eliminated on the basis of intensity 

statistics, which strongly indicated noncentrosymmetry. Since an axial photograph of the 

b axis taken before data collection clearly showed mirror symmetry, space group Cm was 

chosen. Subsequent failed attempts to solve the structure in C2 verified this assignment. 

The structure was solved by direct methods using SHELXS-86. All atoms were easily 

located from Fourier map peaks, reasonable Ta-Ta, Ta-S, and Ta-Br distances, and 

structural similarities of TasSBr? to other M3QX7 compounds. Psi-scans of six reflections 

were averaged and applied to the data to correct for absorption and, after isotropic 

refinement,^®' a DEFABS correction was applied.'™' All atoms were then refined 

anisotropically. The final residuals converged at R = 0.027, = 0.032. Further 

crystallographic information is listed in Table 3-1. Atomic coordinates and isotropic 

displacement parameters are given in Table 3-2. Anisotropic displacement parameters are 

given in Table 3-3. 
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(a) x700 image. 

(b) x900 image. 

Figure 3-5. SEM images of larger crystalline TasSBr? samples. 
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Table 3-1. Crystallographic data for TasSBr? 

Formula weight 1134.23 
Crystal system Monoclinic 
Space group Cm (no. 8) 
Color of crystal black 
Dimensions of crystal (mm) 0.03 X 0.04 X 0.2 
Lattice parameters (A) 

a 12.249(2) 
b 7.071(2) 
c 8.829(2) 
y9(deg) 134.421(8) 

Vol. (A^) 546.16(23) 
Z 2 
£4jc (g cm'^) 6.896 

Diffractometer Rigaku AFC6R (Mo Ka) 
Linear absorption coeflBcient 55.13 mm"' 
Transmission ranges 0.87-1.0 
Temperature of data collection 23°C 

Scan method 20-<d scan 
Range in M/ 0 ^ / ; ^  1 4  

0 ^ y t ^ 8  
- 1 0 ^ / ^ 7  

20mK (deg) 50 
Number refl. measured 1118 

No. observed 1067 
No. unique observed (I > 3ai) 509 

R(int) 0.1193 
No. parameters refined 57 
Largest AF peak, eVA^ 2.0 
Residuals' 

R 0.0267 
Rw 0.0322 

» R = 2i|F<,| - |Fc||/2|Fo|; Rw = [2w(|Fo| - |Fc|)'/Zw(Fo)']"^;w=l/a^(Fo). 
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Table 3-2. Atomic coordinates and isotropic displacement parameters for TasSBr?. 

Atom Position X y z 

Tal" 2a 0.9643 0 0.6138 0.65(6) 

Ta2 4b 0.1662(2) 0.2025(1) 0.6129(3) 0.63(4) 

Brl 2a 0.6553(7) 0 0.393(1) 0.8(2) 

Br2 2a 0.7111(7) 0 0.8380(8) 1.0(2) 

Br3 2a 0.1327(7) 0 0.3444(8) 1.1(2) 

Br4 4b 0.9638(5) -0.2537(8) 0.8384(6) 1.0(1) 

Br5 4b 0.8799(5) -0.2539(8) 0.3454(5) 1.0(1) 

S 2a 0.243(2) 0 0.886(2) 0.7(4) 

Table 3-3. Anisotropic displacement parameters for TasSBr?. 

Atom Ui,^ U22 U33 U,2 U,3 U23 

Tal 0.009(1) 0.0087(8) 0.010(1) 0.0 0.0075(9) 0.0 

Ta2 0.0088(6) 0.0074(5) 0.0112(6) -0.0012(6) 0.0082(5) -0.0007(6) 

Brl 0.013(3) 0.011(3) 0.016(2) 0.0 0.013(2) 0.0 

Br2 0.021(3) 0.010(3) 0.013(2) 0.0 0.014(3) 0.0 

Br3 0.019(3) 0.013(3) 0.018(3) 0.0 0.016(3) 0.0 

Br4 0.011(2) 0.014(2) 0.014(2) 0.005(2) 0.009(2) 0.0058(6) 

Br5 0.011(2) 0.013(2) 0.014(2) -0.006(2) 0.009(2) -0.0069(5) 

S 0.009(7) 0.009(6) 0.015(6) 0.0 0.010(6) 0.0 

" Be, = (87c^/3)SiZjUijai»a,'aiaj. 
^ Tal positional parameters fixed in x, z. 
' Uij = exp(-27t^(a*^C/iih^ + h*^U22  ̂+ + 2a*b*C/,2hk + 2s*c*UiM + 

2b*c*C/23kl)) 



www.manaraa.com

100 

Theoretical calculations 

Extended Hiickel electronic structure calculations^''^ within the tight-binding 

approximation''^' were performed on the observed structures of TasSBr? as well as on a 

hexagonal (NbaSBr? type) model structure. Default atomic orbital parameters'''' were 

iterated to charge consistency, and are listed in Table 3-4. Lattice energy calculations 

were performed which included two terms, the Madelung energy, Umad, and the Bom-

Mayer repulsion energy, Ubm- These terms can be expressed as follows: 

UM.AD=14.402^.«//n/ (2) 
ij 

Ubm = b £(1 + 9//ri(0) + q//rj(0))exp(-nj /p) (3) 
ij 

Summations were carried out over all pairs of atoms {ij} except when i = j. The scale 

factor b in the Bom-Mayer term is determined by assuming the lattice energy calculated 

for each structure to be a minimum with respect to the shortest anion-cation distance Ro, 

i.e., (5Ulat/5R)Ir-ro= 0. As discussed later, twelve stmctures were investigated. 

Table 3-4. Atomic orbital parameters for extended Hiickel calculations on MsSBr? 
(M = Nb, Ta). 

Atom Orbital Hii (eV) Ci c, C2 C2 

Nb 
5s 
5p 
4d 

-8.96 
-4.99 
-9.83 

1.89 
1.85 
4.08 0.6401 1.64 0.5516 

Ta 
6s 
6p 
5d 

-8.96 
-4.99 
-9.83 

2.28 
2.24 
4.76 0.6104 1.94 0.6104 

S 3s 
3p 

-20.00 
-13.30 

2.12 
1.83 

Br 4s 
4p 

-22.07 
-13.10 

2.59 
2.13 
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Since the scale factors for all twelve were nearly identical, an average value was 

calculated and used for all twelve. r(0) values are the "basic radii" for ions as defined by 

Bevan and Morris.'®'' These values are: Ta, 0.72 A; S, 1.84 A; Br, 1.96 A. Finally, p = 

0.345 A. The Madelung energy was evaluated using the Ewald method.'*'^ 

Results and Discussion 

TasSBr? crystallizes in a new structure type, and is the first Ta compound in the 

M3QX7 system not isostructural with its Nb counterpart. However, the basic structural 

motifs present in TasSBr? are quite similar to other 3-1-7 compounds. Figure 3-6 shows 

an approximate [010] view of two TasSBr? slabs with the unit cell and anion sheet 

stacking sequence. Ordered, nearly close-packed mixed-anion sheets pack in an ...AB..., 

or ...h..., fashion, the same general anion stacking pattern observed in NbsSBr?. The 

suliiir atoms occur only in every other mixed-anion layer (the "B" layer in Figure 3-6), and 

order in a hexagonal pattern commensurate with the location of the metal clusters. This 

ordering pattern is shown in Figure 3-7. Tantalum atoms reside in 3/4 of the octahedral 

holes in alternate layers, and cluster together to form the trinuclear clusters that hallmark 

all M3QX7 compounds. The Tas clusters are always situated directly beneath, and so are 

capped by, the sulfur atoms. In TasSBr?, all of these TasS "tetrahedra" are oriented in the 

same direction ([001]) throughout the structure, an arrangement which automatically 

precludes centrosymmetry. 

As noted above, in both NbaSBr? and TasSBr? the mixed anion layers pack in an 

...AB... (...h...) fashion, with one MsSBr? slab per unit cell. However, because of the 

presence of the triangular metal clusters, coupled with the sulfiir-bromine ordering in the 

anion layers, a shift in the stacking of successive TasSBr? slabs causes the adoption of the 

new structure type in the tantalum system while maintaining the same general anion layer 

stacking sequence found in NbsSBr?. In fact, as discussed in more detail later m this 

section, the NbsSBrvand TasSBr? structure types represent the only two unique ways to 

stack MsQXrtype slabs while maintaining one slab per unit cell and ...AB... packing. The 
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Figure 3-6. Approximate [010] view of two TasSBr? slabs and the unit cell. The 
mbced-anion sheet stacking sequence is indicated also. Dark circles, Ta; 
Grey circles, S; open circles, Br. 

Figure 3-7. Ordering pattern formed by the anion layers in M3QX7. The positions of S 
or Brl within the anion layers in TasSBr? are shown as shaded circles. 
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construction of these two types is now described. Figure 3-8 shows one M3QX7 slab 

viewed down the stacking direction ([001]). The large dark circles constitute an "A" 

anion sheet, and the large open circles a "B" sheet. The unique atom (S) at the centers of 

the hexagonal spaces formed by the surrounding anion matrix are labeled, and the metal 

atoms are shown as small black circles. Bonds are omitted for clarity. The two one-slab 

structures are generated as follows: 

1. Perfect superposition of like ordered anion sheets: each A (or B) sheet stacks directly 

over all other A (or B) sheets (perfect ...ABAB... pattern). Referring to Figure 3-8, 

and focusing on any sulfur atom in a "B" sheet, this corresponds to all sulfur atoms in 

every "B" sheet stacking directly above the sulfur atoms in all other "B" sheets. In 

essence, the sulfurs "line up" along the stacking direction, [001], This stacking 

sequence generates the previously discovered NbsSBr? type. Successive NbsSBr? 

slabs are related to one another simply by a lattice translation in the stacking direction 

(see Figure 1-14, Chapter One). 

2. Shifting of every other slab such that the "A" and "B" sheets in alternating slabs have 

moved to any one of the six available nearest neighbor "A" and "B" sites, respectively 

(ABAB'). Again referring to Figure 3-8 and focusing on any sulfur atom in a "B" 

sheet, this corresponds to sulfur atoms in alternate slabs being situated above any one 

of the six adjacent "B" sites (light atoms) specified by arrows. The Tas clusters follow 

the position of the sulfur. (Conceptually "moving" the appropriate layers in any of the 

sbc directions specified by the arrows in Figure 3-8 yields the same three-dimensional 

structure, but with a different relative orientation of the unit cell.) This stacking 

sequence generates the new monoclinic TaaSBrrtype, where the cluster pattern is such 

that successive slabs are related to one another by the stacking vector [1/2 6 + c], with 

two formula units per unit cell. Figure 3-9 shows two TasSBr? slabs viewed down 

[001], with the projection of the unit cell. 
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A" anion sheet 

'B" anion sheet 

Tas cluster 

Figure 3-8. [001] view of a single I [M3QX7] slab. Large grey circles: "A" sheet 
(Brl, Br3, Br5). Large open circles: "B" sheet (Br2, Br4, S (= Q, 
labeled)). Small black circles: Tas clusters. 

Arrows indicate shifts of alternate slabs that generate the TasSBr? structure 
while maintaining overall ...AB... stacking, (i.e., stacking an identical slab 
on top of the one shown so that the Q atom is at the terminus of one of the 
arrows results in the TasSBr? structure.) See text for complete description. 
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Figure 3-9 [001] view of TasSBry. Ta, black circles; Br, open circles; S, grey circles. 
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A multitude of stacking modes involving multi-slab stacking and alternate 

orientations of the TasQcp fragment is of course possible, but within the constraint of one 

slab per unit cell, these ordered sheets can stack only in the two unique ways described 

above. All other stacking possibilities result in a stiucture containing at least two slabs per 

unit cell. Why this is so can be seen by considering the following requirements for a one-

slab M3QX7 structure, which both must be satisfied simultaneously: 

1. (...AB...) stacking of the anion sheets. Clearly, more complicated stacking patterns 

(e.g. ABAC, ABCB) require a larger repeat unit. 

2. Non-centrosymmetry. For M3QX7 systems, this implies unidirectional orientation of 

all MsQcjp fragments. If the MsQap fragments alternate direction throughout the 

structure, again the repeat unit must incorporate fragments from at least two slabs. 

The simplicity of having only two stacking type choices obviously disappears when 

the possibility of more than one slab per unit cell and alternate orientations of the MsQ^p 

fragments are allowed. Allowing two slab per unit cell stacking, the number of possible 

structure types increases to 24. This number includes the one-slab NbsSBr? and TasSBr? 

types, which can be thought of as a special subset of the larger two-slab set. Only three 

two-slab structures have been found: the NbsSel?, NbsTeBr?, and a-NbsClg-types. In a 

manner similar to how the structure of TasSBr? was derived from that of NbaSBr? (see 

above), the structures of these 24 variants can also be derived. As proof of the existence 

of the 24 two-slab types, consider the following. Sbc non-equivalent sites surround each 

anion sheet atom. Two orientations of the TasQcp units relative to those in the adjacent 

slabs ("ferroelectric" and "antiferroelectric") are possible. Finally, there are two possible 

unique rotational conformations of the slabs relative to one another (identity + sk-fold 

rotation of the adjacent slab). Thus, 6 x 2 x 2 = 24 possible types. Of these 24, 12 display 

chemically unreasonable anion stacking sequences, involving directly superimposed atom 

sheets (i.e. an AA sequence), giving rise to trigonal prismatic sites in the van der Waals 
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gap. Such stacking has never been observed in these systems, or indeed in any system 

without an atom in the trigonal prismatic holes to hold the layers in this position (e.g., 

M0S2). After discarding the 12 structures with ABBA, ABBC, or ABC A stacking, 12 

feasible types remain. Representations of these 12 types are given in Figure 3-10. In this 

figure, only the spatial relationship of two metal triangles situated in adjacent slabs is 

shown in projection down the stacking direction [001]. A hexagonal unit cell is indicated 

in dashed line for comparison with NbsSBr?. The anion sheet stacking sequence is given 

next to each projection, and the projections are divided into two classes, ferroelectric 

(unidirectional orientation of the TasQap dipole), and antiferroelectric (the TasQcp dipole 

alternates direction fi-om slab to slab). 

In order to compare the relative energies of the possible two-slab structures, lattice 

energy calculations were performed. The Madelung energies were evaluated, and Bom-

Mayer repulsion terms were included to probe for small repulsive interactions between 

tantalum atoms which might drive adoption of a particular type. The hypothetical 

structures mimic actual M3QX7 slabs as far as reasonably possible. Within the slabs, 

however, slight deviations fi'om the observed bond lengths were introduced due to the use 

of perfect close-packed anion sheets in the calculations. Actual M3QX7 compounds show 

slight disruptions due to metal clustering, as discussed further later. Ta-Ta and Ta-S 

distances were set equal to those observed in TasSBr?, and all others were within 0.1 A of 

the observed distances. The distance between slabs (the van der Waals gap) was taken 

from that observed in TasSBr?. These slabs were then "stacked" to produce the twelve 

structures investigated. Since the slabs are identical, the calculated energies reflect 

interactions through the van der Waals gap rather than within the slabs. 

Initially, Madelung energies alone were evaluated. These are listed in Figure 3-10. 

The results show a clear sorting of the structures into two classes, ferroelectric and 

antiferroelectric. In all cases, the sbc ferroelectric structures were favored (more negative 

Madelung energies). Such an arrangement maximizes the distance between the sulfiirs, 
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Ferroelectric Antiferroelectric 

Stacking Structure Evud (eV) Stacking Structure EM»d (eV) 

ABCB 
(NbaSel? 
type) L ( 

/ ̂  
ABAB 

(NbaSBrv ' \/  ̂

ABAC 
' A L. 

r - ~ 7 

ABCB ' X7 

L. - Z -J 

•138.453 

-138.266 

-138.240 

ABAB 
(TasSBr? / -V/ -138.096 

typ«) Z. 

r z 
/ -138.062 

ABAC /J\\/ -137.923 

ABCB / -137.763 

ABAC 

ABAB 
(ct-NbsCIg 
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ABAC 

/V 

/  • /  

L. / 

^ / 

ABCB 

L t 

L .¥' 

ABAB N; 
L 

-U1.163 

•137.682 

-137.650 

•137.650 

^ - -7 
' -137.641 

Figure 3-10. Partial [001] projections of the twelve structures used in lattice energy 
calculations. Positions of the metal cluster sites in adjacent slabs are 
shown. Anion stacking sequences are given to the left of each 
projection, and calculated Madelung energies to the right. 
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reducing strong repulsion between the "hard" anions. Further inspection of the six 

favorable ferroelectric structures also suggests a preference for the slabs to align such that 

the more highly charged chalcogen anion to be as near as possible to the metal cations in 

the adjacent slab. Interestingly, the only observed M3QX7 compounds forming with an 

antiferroelectric structure are M3QCI7 (M = Nb, Ta; Q = Se, Te), implying greater 

importance of the Madelung term for the bromides and iodides, as suggested earlier. 

The failure of the calculations to predict the TajSBr? type as the most favorable of the 

twelve structures is not too disturbing, since the sbc lowest energy ferroelectric structures 

are separated by at most only 0.5 eV. 

Next, the Bom-Mayer repulsion term was taken into account. Including this term 

changed the energetic ordering of the structures, and is clearly the more important term 

for bromides. TasSBr? is now the most favored of the observed structure types. Results 

are given in Figure 3-11. 

Additionally, a series of extended Hiickel calculations designed to determine 

relative energies of the two stacking variants and possibly rationalize the preference for 

monoclinic versus hexagonal stacking were carried out. A perfectly hexagonal MsSBr? 

mode! slab was generated starting with the published NbsSBr? lattice parameters and 

atomic coordinates. However, to account for the slightly smaller lattice metrics and bond 

distances in TajSHrv, these NbsSBr? lattice parameter values were adjusted (shortened), 

and atomic coordinates were tuned until average Ta-Ta, Ta-S, and Ta-Br distances were 

achieved. From this model slab, the two different three-dimensional structures were built 

by specifying appropriate stacking vectors to give the hexagonal or monoclinic variants. 

The number of k-points was the same (32) in all calculations. The calculated total energy 

for the observed monoclinic structure was -1110.21 eV, and the total energy for the 

hypothetical NbsSBrrtype hexagonal TaaSBr? was -1110.25 eV. Clearly, the calculation 

results show only negligible energetic differences (0.04 eV on scale of roughly 1000 eV) 

between the hexagonal and monoclinic stacking modes. 
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Ranking 

Anion 
Stacking [001] projection 
Sequence of the Taa units Emad + Ebm Slab orientation 

1. ABAC 
' A L. _ 

-80.102 eV Ferroelectric 

2. ABCB 
/ -80.031 eV 

ABAC 

l-R' 

/ •/ 
iL I 

Ferroelectric 

-79.796 eV Antiferroelectric 

ABAB 
4. (TasSBr? 

type) 

5. 
ABAB 

(a-NbsClg 
type) 

/ -79.766 eV Ferroelectric 

717 eV Antiferroelectric 

L f 

ABAB ,'"^7 
(NbaSBrT / V/ 

type) z. f 
-79.299 eV Ferroelectric 

ABCB 
8. (NbaSel? 

type) L 

r 7 

/ -79.039 eV Ferroelectric 

Figure 3-11. Energetic ranking of the important structures as derived from the lattice 
energy calculations. The energies in the fourth column represent the sum 
of the Madelung term and the Bom-Mayer term. 



www.manaraa.com

I l l  

The stacking mode in TaaSBr? prohibits the possibility of hexagonal symmetry. 

The three-fold axis and two of the three mirror planes centered on the MsSBr? cluster unit 

in the hexagonal case are lost: the local cluster point symmetry drops from Csv to C„ with 

the one remaining mirror plane dividing the cluster into two sets of crystallographically 

inequivalent atoms. The cluster unit and atom labeling scheme are shown in Figure 3-12. 

However, within or very close to being within experimental error, all Ta-Ta and Ta-S 

bond distances are equal: Tal-Tal, 2.862(2) A; Tal-Ta2, 2.864(2) A; Tal-S, 2.44(2) A; 

Ta2-S, 2.36(1) A. Ta-Br distances follow this trend also. The triangular cluster is still 

nearly equilateral: ZTal = 60.04(6)°, ZTa2 = 59.98(3)°. Other relevant bond distances 

and bond angles are listed in Table 3-5. 

Brl 

Br4 

Figure 3-12. TasSBr? cluster atom labeling scheme, view down [001], A mirror 
plane bisects Brl, Tal, S, Br3. Small black circles, Ta; large grey circle, 
S; large open circles, Br. 



www.manaraa.com

112 

Table 3-5. Comparison of bond distances in TasSBr? and NbaSBr? (A), and selected 
bond angles in TasSBr? (deg). 

TasSBr? NbsSBr? 

Tal - Ta2 2.862(2) N b - N b  2.896 

Ta2-Ta2 2.864(2) 

T a l  - S  2.44(2) N b - S  2.410 

Ta2- S 2.36(1) 

Tal - Brl 2.793(7) N b - B r l  2.804 

Ta2 - Brl 2.801(4) 

Tal - Br5 2.545(5) 

Ta2 - Br5 2.532(4) N b - B r 2  2.544 

Ta2 - Br3 2.545(5) 

Tal - Br4 2.678(5) 

Ta2 - Br4 2.681(5) N b - B r 3  2.687 

T a 2 - B r 2  2.673(3) 

(Horizontal dashed lines separate sets of bonds rendered inequivalent when compared to 
NbaSBr? by the lower symmetry of TasSBr?) 

Bond Angles in TasSBr? 

Ta2 - Tal - Ta2 60.04(6) Tal - Brl - Ta2 97.6(2) 

Tal - Ta2 - Ta2 59.98(3) S - Tal - Brl 165.1(4) 

Tal - S - T a 2  73.2(4) S - Ta2 - Brl 162.7(3) 

Ta2 - S - T a 2  74.7(4) Br4 - Ta2 - Br5 162.1(1) 

Tal - Br5 - Ta2 68.6(1) Br4 - Tal - Br5 162.2(2) 

Ta2 - Br3 - Ta2 68.5(1) 
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To probe for possible electronic reasons for the small deviations from trigonal 

symmetry, extended Huckel calculations were carried out on a hypothetical monoclinic 

TasSBr? where the slight crystallographic inequivalences were removed, and individual 

slabs were restored to hexagonal symmetry. The complete three-dimensional structure 

still has monoclinic symmetry because of the slab stacking mode. The overlap populations 

of all Ta-Ta and Ta-S bonds in this hypothetically undistorted monoclinic TasSBr? were 

exactly equivalent, implying that the slight distortions away from Csv cluster symmetry 

result from a mild (in fact nearly negligible) "relaxation" of the structure when hexagonal 

symmetry constraints are removed upon lowering to monoclinic symmetry. 

In order to approach each other closely enough to achieve the Ta-Ta bond 

distances mentioned above, the tantalum atoms are displaced from the centers of their 

octahedral sites toward the centroid of the resultant cluster. These displacements aflfect 

the surrounding anion layer network: The atom in the anion layer ("B" sheet) directly 

above the three clustered metals (the capping chalcogen atom) is "squeezed" up into the 

van der Waals gap to minimize repulsion from the tightly bound triangle beneath it. 

Simultaneously, a halide (Brl) is drawn into the metal atom layer in compensation for the 

space left by the displaced metal atoms. The result of these anion displacements (driven by 

the formation of the metal triangle) is a topographical pattern of elevations on the top side 

of each M3QX7 slab and indentations on the underside. These corrugations occur in all 

M3QX7 compounds, as well as in NbsXg. In the parent Cd(0H)2 structure, of course, no 

metal-metal bonding exists; each Cd atom sits exactly in the center of its octahedral hole, 

and the anion layers are flat. Atomic Force Microscopy (AFM) experiments performed on 

the binary halides NbaXg (X = CI, Br, I) yielded images of one surface of a slab, probably 

the surface containing the Xcap atom, where a similar elevation of the capping halide was 

observed.^^' 

In TasSBr?, the sulfiir atoms lie 0.297 A above the surrounding Br2 + Br4 layer, 

and Brl is lifted 0.302 A into the metal layer. It is interesting to note that in TasSBr?, 

successive slabs are stacked so that the "bumps" caused by the protruding S atoms on the 

top side of a slab correlate with the indentations caused by the lifting of Brl into the 
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underside of the adjacent slab. However, it is unlikely that this is the reason for the 

particular stacking mode in TaaSBr?. NbsSBr? shows the same bumps/depressions, but 

crystallizes so that the sulfurs directly abut a flat surface. Furthermore, no preferred fitting 

is observed even in compounds where, because of different relative sizes of chalcogen and 

halide, tlie bumps and depressions are even more pronounced. For example, in TasTel?, 

the large Te^" anions protrude 0.55 A above the surrounding iodide layer, yet no 

correlation of these contours is observed. In NbsTeCl? and TasTeCl? (see Chapter 

Four), where the chalcogen/halogen size ratio is largest, a centrosymmetric structure 

forms where the elevated Te atoms share the same van der Waals gap space. 

The above considerations underscore the subtlety of the factors governing the 

formation of particular polytypes: the effect of entropic terms and hard-to-control 

experimental details like pressure in the reaction tube, or unwanted (but everpresent) 

temperature gradients, lack of knowledge about nucleation and crystal-growth 

mechanisms, all of which are difficult to quantify. Most likely, an interplay between very 

small energetic and entropic effects beyond the scope of our calculations determines the 

various stackings of the weakly interacting M3QX7 slabs in such layered compounds. This 

suggests that, upon finding the right conditions, polymorphism may be observed in these 

systems. In an attempt to investigate temperature effects on the formation of different 

polytypes, crystals of NbsSBr? were grown in our lab at temperatures of 450°C, 600°C, 

and the reported 800-750°C transport conditions. NbaSBr? was chosen because TasSBr? 

thermally decomposes into Ta^Bris, TaBrs and TaS2 above ca. 575°C, so its temperature 

stability region offers less flexibility than does NbsSBr?. Several NbsSBr? crystals firom 

each reaction temperature were chosen. All reproduced the published hexagonal 

structure, as determined by single crystal x-ray diflfi^ction. 

Tantalum and niobium are well-known for their often indistinguishable behavior at 

moderate temperatures, and the departure of TasSBr? fi'om the structural model set by 

NbsSBr? is unusual. This sulfide bromide pair offers an interesting opportunity for a 

mixed-metal study, namely Tas-xNbxSBr? (0 ^ x ^ 3). Which of the two structures will be 

preferred? Will the relative amounts of each metal play a role? Although a tantalum-rich 
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system might be expected to adopt the TasSBr? structure and a niobium-rich system the 

NbaSBr? structure, a composition around NbhsTa^sSBr? might yield unexpected resuhs. 

Such a system was explored, and the results are given in Chapter Five of this thesis. 
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CHAPTER FOUR 

NEW TANTALUM CHALCOGENIDE CHLORIDES 

Introduction 

Chlorine is the smallest and most electronegative halogen under consideration 

here, and chloride compounds should be expected to diflfer from the larger halide 

compounds in that the chloride will introduce more hard ionic character into the 

compound. "Ionic" here refers to a greater degree of charge localization due to the 

greater electronegativity of CI, and a greater separation of energy levels (larger band gap). 

Chlorides seem to be less readily incorporated into complicated structures, possibly due to 

the greater relative stability of binary alternative products. Systems composed of 

increasingly "hard" anions (S/Cl > Se/Cl > Te/Cl > Q/Br > Q/I) show a much greater 

proportion of simple binary phases to more structurally "delicate" ternary ones. 

a-NbsClg and NbsTeCl? are the chloride phases reported for niobium most relevant 

to this thesis. Both adopt the a-NbaCU structure, described in Chapter One and in greater 

detail below. Nb3SCl7 and NbaSeCl? apparently have not been synthesized. 

Tantalum chalcogenide chlorides, TaaQCly (Q = S, Se, Te) 

General note on synthesis of TasQCl? 

Due to handling inconveniences associated with gaseous elemental chlorine and the 

ease and equal suitability of using TaCls in this research, the latter was employed as the 

halide source in all syntheses of tantalum chalcogenide chlorides described below. 

Purification of commercial TaClj is essential due to inevitable contamination by oxides and 

oxychlorides. TaClj was separated from common impurities like TaOCU and TajOs by 

repeated sublimations at 150°C in a static vacuum. The purifed TaCls was then handled in 

an Ar-fiUed glove box exclusively. 
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The general reaction to form the chalcogenide chlorides is: 

8 Ta + 7 TaCis + 5 Q = 5 TajQCl: (Q = S, Se, Te) (1) 

The TaCls is reduced by elemental Ta in the presence of chalcogen at the appropriate 

temperature to yield the ternary phase. 

TasTeCl? 

Synthesis and characterization 

The highest yields of pure TasTeCl? can be obtained by reactions according to 

Equation (1) at temperatures from 500°C to ca. 550°C, for a duration of two weeks. 

Nearly quantitative conversion of the starting materials is achieved using these conditions. 

TasTeCl? will form at lower temperatures, but reaction time necessary to produce a good 

yield of TasTeCl? is increased significantly, and transport of the pure crystalline solid is 

diminished. 550°C appears to be the upper stability limit of TasTeCl?. Above ca. 550°C, 

TasTeCl? is not observed; instead, the binaries TaClj, TaeClu and TaTej are the only 

compounds observable by x-ray powder diffraction. 

TaaTeCl? generally forms as large batches of black, reflective, densely intergrown 

crystals that grow prodigiously at the far (presumably cooler) end of the reaction tube. 

Such transport occurs even when efforts to smooth out temperature gradients are made. 

Since the exercise of trying to remove any magnitude of temperature gradient is one of 

utter fiitility, efforts were made only to minimize such thermal inhomogeneities as much as 

possible. Indeed a small gradient helps separate the pure crystalline solid from starting 

materials and intermediate phases, and TasTeCI? can be purified by "sublimation". 

Grinding crude TasTeCl? and then heating the powdered sample in vacuo through a small 

temperature gradient (within ±25°C of 500°C, with a 5 to 10® imposed temperature 

gradient) nicely transports pure crystalline solid. TasTeCI? crystals display a clear 

hexagonal morphology, forming as flat, reflective, hexagonal plates. Figure 4-1 shows 

SEM micrographs of crystalline TasTeCl?. Single crystals can grow to quite large 
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Figure 4-1. Two SEM images of TasTeCl?, showing the broad, flat hexagonal plate 
morphology, and the stacking of crystallites. 
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dimensions, up to 3 mm across. Though such large crystals as well as the bulk solid both 

appear black, TasTeCl? is actually dark green. Crystals of the compound become 

transparent olive-green when extremely thin. Interestingly, NbsClg is reported to be a dark 

green color; no mention is made of the color of NbsTeCl?. TasTeCl? grinds with a 

lubricating feel to a green powder. TasTeCl? is air-stable apparently indefinitely, and is 

also unafifected by immersion in water and organic solvents. Non-oxidizing acids act 

slowly on the compound, eventually decomposing it to an uncharacterized white powder 

after a few days. Oxidizing acids decompose the compound immediately. 

The Guinier powder diffraction pattern of TasTeCl? indicated it to be isostructural 

with NbsTeCI?. However, notwithstanding the readiness with which TasTeCl? will form 

single crystals, high-quality crystals of TasTeCl? were difficult to come by. The best 

crystal was obtained fi-om a reaction at 500°C for two weeks. Many other efforts, 

incuding initial reactions and heating powders of pure, premade TasTeCl? under a wide set 

of conditions also yielded numerous single crystals. Most of these diffracted poorly, 

exhibiting broad, poorly-shaped diffraction maxima (greater than 1° wide, asymmetric), 

indicative of misstacked, poorly aligned sections of the crystals. A suitable crystal was 

finally selected, mounted in a capillary, and aligned on a Siemens P4 diflfractometer for 

intensity data collection. The diffraction peak widths ranged from 0.4® to 1°, but were 

Gaussian in shape. Unit cell parameters were determined by indexing 35 reflections with 

9° ^ 20 ^ 25°. 792 reflections were collected, to 20nux = 45° at a temperature of 296 K. 

No significant decay in intensity was observed. The data were corrected for Lorentz and 

polarization eflfects during the data reduction process, and later an empirical correction for 

absorption using azimuthal ("psi") scans of several reflections was applied. The structure 

was easily solved using direct methods^*^' and refined using SHELXL-93.^®^' Structure 

solution was straightforward, using isostructural NbsTeCl? as a model.^'*^' Table 4-1 

contains a summary of the crystallographic data relevant to structure determination and 

refinement. Atomic positional parameters and isotropic displacement parameters are given 

in Table 4-2. More accurate lattice constants were achieved by refining Gumier powder 

diffraction data. A sample of TasTeCl? was ground thoroughly in an Ar-filled glove box. 
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Table 4-1. Summary of crystallographic data for TasTeCl? 

Formula weight 918.60 
Crystal system Trigonal 
Space group P3ml (No. 164) 
Color of crystal black 
Dimensions of crystal (mm) 0,2x0.2x0.05 
Lattice parameters (A) 

a 6.851(10) 
c 12.661(3) 

Vol. (A^) 514.6(2) 
Z 2 

(g cm'^) 5.928 

Diffractometer Siemens P4 
Radiation Mo Ka,X = 0.71071 A 

Linear absorption coefficient 36.34 mm"' 
Transmission ranges 0.87-1.0 
Temperature of data collection 23°C 

Scan method CD scan 
Range in hkl 

- l ^ k ^  1 
-1 13 

2Quux (deg) 45.00 
Number refl. measured 704 

No. observed (I > 2ai) 296 
No. unique observed 219 

R(int) 0.0800 
No. parameters refined 26 
Difference map (e'/A^) 

Largest peak 2.033 
Largest hole -1.671 

Residuals* 
R 0.0374 
Rw 0.0686 

GoF 1.120 

' R = ZllFol - lF.l|/21Fo|; R, = [Sw(|Fol - lFc|)'/Sw(Fo)']'^; w = l/a^CFo). 
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Table 4-2. Atomic coordinates and isotropic displacement parameters for TasTeCl?. 

Atom Position X y z Uo, 

Ta 6i 0.52716(10) -X 0.75982(10) 0.0069(4) 

Te 2d 2/3 1/3 0.5909(3) 0.0097(9) 

Cll 2d 1/3 2/3 0.8668(10) 0.007(3) 

C12 6i 0.8322(5) -X 0.8855(6) 0.008(2) 

C13 6i 0.1662(5) -X 0.6609(6) 0.010(2) 

with silicon powder added as an internal standard. Ground glass was also added to aid in 

the powdering process. Using the angular positions of 25 lines measured from a Guinier 

film, the lattice constants of TasTeCl? were refined. The results are given in Figure 4-2, 

along with the powder diffraction pattern generated from the single crystal solution. The 

lattice constants and Guinier pattern of a-NbsClg and NbsTeCl? are also given in this 

Figure. 

Further characterization: Magnetic susceptibility 

One large solid crystalline sample of TasTeCl? was glued in air inside a straw for 

magnetic susceptibility measurements. The susceptibility was measured using a SQUID 

magnetometer, from 6 - 300 K at a field strength of 3 T. The sample showed the same 

weak paramagnetic signal observed in all M3QX7 compounds, the meaning of which has 

not been satisfactorily explained. A room temperature moment of 1.91 BM was 

measured. The magnetic susceptibility data are shown in Figure 4-3. 

Structure description 

TasTeCl? is isostructural with NbsTeCl?, adopting the centrosymmetric a-NbsClg 

structure in which nearly close-packed mixed anion sheets stack in an ...AB..., or ...h... 

fashion, and triangular tantalum clusters interleave alternate sheets. Both structures can 
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Figure 4-2. (a) Generated powder pattern for TasTeCl?, with lattice parameters as 
refined fi-om powder data, (b) Powder pattern and refined lattice 
parameters for NbsTeCl?. (c) a-NbsClg powder pattern and lattice 
parameters. The abscissa corresponds to degrees 20. 



www.manaraa.com

Motaf susceptibility (emu/mote) 
0 ) ^ 0 1  
s s s 

1 / molar 8USC. 

Z Z l  



www.manaraa.com

124 

be viewed as chalcogen-substituted a-NbsCU derivatives. In TasTeCl?, the anion sheets 

stack such that two adjacent layers are mixed Te/Cl sheets, then the next two sheets 

consist of only chloride, then two more mixed sheets, and so on. The metal clusters are 

sandwiched between a mixed sheet and an unmixed sheet, and follow the position of the 

tellurium atom, which always acts as the cluster capping atom. In the mixed Te/Cl sheets, 

the telluriums are surrounded by six CI atoms, never by another Te. The chloride anions 

are arranged in a Kagome net (the same pattern described in reference to TasSBr?, 

Chapter Three, Figure 3-7), the large hexagonal spaces of which are occupied by Te. 

Structural diagrams of the a-NbsCls type can be found in Chapter One, Figure 1-12. As 

occurs in all M3QX7 compounds and also in NbsXg, the cluster capping atom situated 

above the clusters and the Ha" anion situated below the clusters are both displaced above 

their respective surrounding anions as a response to clustering. In TaaTeCl?, the tellurium 

atoms are pushed up by a distance of 0.887 A. This is the largest capping chalcogen 

displacement of any of these compounds, and is due to the large anion size mismatch. 

Elevation of the large Te^" anions is enhanced by the surrounding dense network of hard 

Cr ions. Cll is displaced 0.237 A, pulled into the metal layer. Due to the 

centrosymmetric stacking in TasTeCl?, these protruding Te atoms share the same van der 

Waals space, at a minimum distance of4.577 A from each other. The other van der Waals 

gap is bookended by the sheets containing Cll and CIS atoms, and features indentations 

caused by the displacement of Cll into the metal layers. 

The Ta-Ta distance in TaaTeCl?, 2.867(2) A, is the shortest of any 3-1-7 

compound characterized yet. This is clearly a halide matrix effect, with the small size of 

the chlorides allowing closer proximity of the tantalum atoms. When embedded in a 

matrix of larger anions, like iodides as in Ac-TasTel?, the Ta-Ta distance is 3.004(2) A. 

Ta-Ta, Ta-Te and Ta-Cl bond distances are listed in Table 4-3, with selected bond angles. 

Bond distances in NbsTeCl? are also given, and reflect the usual trend in isostructural 

niobium and tantalum compounds: tantalum-tantalum distances are slightly shorter than 

the corresponding niobium-niobium distances, while metal-anion distances are similar. 
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Table 4-3. Bond distances (A) and selected bond angles (deg) for TasTeCl?. 
Distances in NbsTeCl? are included for comparison. 

Ta-Ta 2.867(2) Nb-Nb 2.898(1) Ta-Ta-Ta 60.00 

Ta-Te 2.704(3) Nb-Te 2.700(1) Ta-Te-Ta 64.03(9) 

Ta-Cll 2.669(6) Nb-Cll 2.672(1) Ta-Ta-Te 57.98(4) 

Ta-C12 2.425(5) Nb-C12 2.416(1) Ta-C12-Ta 72.5(2) 

Ta-C13 2.496(4) Nb-C13 2.515(1) Ta-Cll-Ta 96.5(3) 

TssSeCly 

Synthesis and characterization 

Several reactions according to Equation (1), and re-heatings of the products of 

these reactions were carried out, in the temperature range 450 to 575°C. Details of the 

experimental conditions of all these reactions are tabulated in Appendix A. By far the 

most abundant material left in all TasSeClv tubes is unreacted Ta metal and TaCls. TaSe2 

and Ta^Clij were also observed. TasSeCl? forms in low yield as a thin grey coating of the 

tube wall, at temperatures of 500 to 550°C. This material was initially identified by 

Guinier powder x-ray diffraction. The powder pattern is identical to that of TasTeCl?, but 

the diffraction line positions are shifted to greater 26, indicating the material has a 

structure similar to TasTeCl?, but with a smaller unit cell. This analysis is consistent with 

what would be expected upon replacing Te with the smaller chalcogen Se. A sample of 

the grey film that gave the TasSeCl? powder pattern was analyzed for elemental content 

using SEM. The SEM confirmed the presence of Ta, Se and CI and provided magnified 

images of the crystallites that make up the film. These are shown in Figure 4-4. Small 

areas of individual crystallites were sampled to insure the elemental identification was fi-om 

a pure sample and not contributions from TaSe2 and TaeClis. The trigonal morphology of 

the crystallites is evident fi^om the micrographs. 
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(a) 1 lOOx magnification of a TasSeCI? film, showing the trigonal morphology of 
the crystallites. 

19 

(b) ffigher magnification of a TasSeClT cr>'stallite. 

Figure 4-4. SEM images of TasSeCl? synthesized at 500°C. 
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TasSeCl? crystal-growing efiForts: All attempts were via high-temperature 

annealing or transport, starting from finely ground products from initial TasSeCl? 

reactions. Samples were heated both with and without an imposed temperature gradient. 

Despite many such efforts, TajSeCl? refused to to grow larger crystals or even larger 

amounts of bulk powder. 

TasSClT 

There is no evidence at all for TasSCl?. Several reactions according to Equation 

(1) in the usual temperature range (400 to 550°C) yield only TaCls, Ta^Clis, TaS:, Ta 

metal, and an air-sensitive yellow-orange solid. Appendix A lists all reactions and re-

heatings of composition TasSCl? attempted. The identity of the yellow-orange solid has 

not been determined. All reports of "TaSCb" (Chapter One) mention it to be an air-

sensitive yellow powder; however all efforts to grow crystals by slow-cooling or extended 

heating failed. The material appears to be amorphous, as it does not yield a Guinier 

diffraction pattern, which at least could be compared to the suggested structural models 

for "TaSCb" (NbOCb and MoOBrs, see Chapter One). No attempts to further 

characterize this phase were made. 
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CHAPTER FIVE 

TANTALUM-NIOBIUM MIXING STUDIES 

Introduction 

There have been several diverse Ta-Nb mixing studies reported.'"' These 

studies often show a complete substitutional range of metals, but some systems have 

shown definite limits to the amount of one metal that can be substituted into the system. 

Most interesting are changes in structure that can occur upon substitution, 

notwithstanding the close similarities of behavior of Ta and Nb. The system NbxTai.xTe4 

has received much attention,'*^' and belongs to the class showing complete solubility of 

one metal onto the other (i.e. x e (0,1)). The end-member phases NbTe4 and TaTe4 are 

both known, and form tetragonal structures that can be assigned to space group P4/ncc 

(subcells). Of interest in these systems is the superstructure, which differs. At room 

temperature, NbTe4 forms an incommensurately modulated superstructure, while TaTe4 

forms a commensurately modulated one. The mixed system NbxTai.xTe4 shows a 

complete range of solubility between NbTe4 and TaTe4, and the average structure (the 

subcell) is that of the binaries. The superstructure that results in the mixed-metal system 

has been shown to be composition dependent, with the Nb-rich end adopting the NbTe4 

superstructure, and vice versa. An example of a system which is not stable over all 

compositional ranges is NbxTa2.xTe3. Harbrecht, et al., studied the stability limits of the 

system NbxTaz-xTes after their discovery of the binary telluride TaaTea. They found that 

niobium could be stabilized in the structure to a limiting composition NbTaTes (x = 1).'*'^ 

Attempting to incorporate more niobium led to formation of NbTe2 and Nb3Te4 as side 

products, along with NbxTa2.xTe3. NbzTea is still unknown. A substantial part of the 

Ta-Nb substitutional chemistry known is due to Franzen, et al., who have studied several 

metal-rich compounds in the tantalum-niobium-sulfur system.^"' Several Ta-Nb-S 

phases were synthesized at extremely high temperatures in an arc melter, and also 

subsequently annealed at high (up to ~1400°C) temperature. The compounds were found 
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to adopt structures with extensive metal-metal interactions, often containing elemental 

bcc-like metal cluster fragments with Ta and Nb mixed onto the same crystallographic 

sites. However, in these systems, the distribution of Nb and Ta over the various metal 

positions in these sometimes complex structures was not completely random. Preferential 

segregation of Nb and Ta over crystallographically and chemically different sites was 

observed, ascribed to stronger metal-metal bonding between Ta atoms than between 

Nb-Ta and Nb-Nb. The layered compound Ta3.28Nb1.72S2 consists of S-M-M'-M"-M'-M-S 

slabs separated by van der Waals gaps, where M refers to a mixed Ta-Nb site. The Ta 

atoms congregate in the interior on the layers, where the coordination sphere of an atom is 

composed entirely of other metals, thus maximizing metal-metal interactions. Nb atoms 

are found in greater abundance near the sulflir-rich surface layers, where metal atoms are 

coordinated by both sulfur and metal. In Ta3.28Nb1.72S2, metal sites further into the metal-

rich interior (M") showed compositions of 88.3 % Ta and 11.7 % Nb, whereas metal sites 

on the outer edge of a slab (Nf) had 62.7 % Nb, 37.3 % Ta.'"' 

The Ta-Nb substitutional studies above have been divided into the following two 

categories:'^' 

1. When the mixed Ta-Nb phase results in the stabilization of a entirely new structure; 

i.e., one that does not exist for either binaiy niobium or tantalum compound. For 

example, the Ta3.72Nb1.28S2 phase mentioned above has no "M5S2" analog in Nb or in 

Ta binary sulfide chemistry. Other examples include Ta€.o8Nb4.92S4 (MuS4),'*^' 

Taj.26Nb6.74S4 (M12S4),""' Tai.o5Nbo.9iS (M2S),"^' Tai.4oNbo.6oS,''°' and TajNbjN,.'''' 

2. The simple substitution of Nb or Ta into a structure where a corresponding 

(isostructural) pure binary compound is known. Examples of this category are legion, 

including NbxTai.xTe4,'*^' NbxTa2.xTe3 (Ta2Te3 type),'"' Ta<;.igNbu.92S8 (Nb2iS8 

type),'"' Ta1.79Nbo.21S (Ta2S type),'"' Ta1376Nb1.126Aso.g97 (TisP type, with NbsAs and 

TasAs),"^' and CusNbTaOg (= CusTazOg and Cu3Nb208).""' 
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Mixing the two metals together provides a system where subtle forces are in competition, 

and might lead to unexpected and interesting structural chemistry. 

Mixed-metal studies in the TasQXy system 

The family of compounds TasQX?, where the three ternary elements neatly 

segregate onto distinct crystallographic positions, oflFers an inviting potential for 

substitutional chemistry. Three clear possibilities exist: 

1. Ta-Nb substitution at a cluster site, similar to the examples described above. This 

option can be further broken down by specifying the elements to be mixed have either 

the same valence electron count as Ta (i.e. V and Nb, maybe Bi?), or a different 

valence electron count than Ta (Mo or Hf for example). An element other than Ta or 

Nb (or V) would of course change the cluster electron count. The ramifications of 

varying the cluster electron count have been discussed earlier (Chapter One), and bear 

directly on the bond lengths and magnetic properties of the substituted compounds. 

2. Substitution onto the capping (chalcogen) site. This of course is the origin of the 

NbsQX? family, which resulted fi-om the substitution of a chalcogen for a halogen in 

the binary halides NbsXs. For the present purposes, this option refers mainly to 

chalcogen-chalcogen mixing, but also, to a lesser degree, halogen-chalcogen mixing at 

the capping site. 

3. Substitution onto a halide position. Three crystallographically inequivalent halide 

positions exist in the hexagonal 3-1-7 compounds, and different Mulliken populations 

have been calculated for each position (see Chapter One). An interesting opportunity 

for experimentally studying the site-adoption preference of the various elements in 

these compounds is thereby offered, further probing the importance of the correlation 

of site electron density and atom electronegativity posited by Miller to explain the 

position of Te in NbsTeCl?.'"*^' 
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The various TasQX? substitutional studies that are described below were 

undertaken to answer several questions, the most basic of which is obviously: Is it even 

possible to substitute one element for another on the various sites described in the section 

above? Other questions are: Will substitution take place while maintaining the structure 

of the pure ternary being substituted, or will a new structure type result? To what extent 

can additional elements be mbced into the structures? Here two general possibilities can be 

enumerated: 

1. Solid-solution behavior, where a complete substitutional range is observed, i.e., any 

composition can be made simply by loading according to the desired stoichiometry and 

heating at the appropriate temperature. 

2. The formation of only discrete compositions. This case would indicate a direct 

correlation with the structural features of these 3-1-7 compounds. An example of the 

second possibility is demonstrated by considering mixing of Ta and Nb onto the metal 

cluster site of a 3-1-7 compound. Structures could conceivably form with all 

triangular clusters made up of a definite Ta:Nb ratio, for instance "Tal^". On the 

other hand, all substitutional permutations could be present in the metal clusters, 

making the overall structures a mixture then of Tas, Ta2Nb TaNb2, and Nbs clusters, 

with the relative populations of these five cluster compositions ultimately determining 

the overall composition of the crystal. 

The system Tas.xNbxTely (0 ^ a: ̂  3) 

Prologue: Synthesis of /j-NbsTel?, the first M3QX7 polytype 

Many of the niobium-rich mixed-metal systems discussed below form in the 

NbsSBr? structure type. This structure type, discussed in Chapter One of this thesis, has 

been heretofore unreported for any iodides. During the course of research into the 

NbsTel? system designed to hunt for polymorphs, a stacking variant of NbsTel? adopting 
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the NbaSBr? type was discovered. The preparation and characterization of this new 

polytype will now be described. NbsTel? was reported in 1988 by Honle and Furuseth."^' 

Under the reported synthetic conditions (reaction of the elements at 800°C in evacuated 

silica tubes for seven days), NbaTel? is observed to form in the NbsSel? structure type, 

also described in Chapter One of this thesis. Briefly, this structure is composed of mixed 

Te / I anion layers that stack in an (...ABCB...) or {...he...) fashion with Nba clusters in 

every other layer. The Nbs clusters are always capped by the Te atoms, and each 

successive NbsTel? slab is related to the adjacent slab by a 63 screw axis. There are two 

NbsTely slabs per unit cell and the structure is necessarily non-centrosymmetric, forming 

in space group P63mc. Because of the (...ABCB...) or (...he...) anion layer stacking 

sequence, and to distinguish this compound from the new polytype reported here, the 

earlier P63mc NbsTel? will be henceforth referred to as //c-NbsTel?, and the new stacking 

variant reported below will be labeled //-NbsTel? in reference to its anion stacking pattern. 

/jc-NbsTel? 

A complete structure determination of /jc-NbsTel? has never been reported, only 

the structure assignment and lattice constants.''*' Crystals of Ac-NbsTel? were proliferate 

in the NbsTel? studies discussed here, therefore a full structure determination is now 

given. Intensity data from a hexagonal prism selected from a 600°C reaction were 

collected on a Siemens P4 dififractometer. After correcting the 1488 collected reflections 

(20mK = 60°) for absorption (psi-scans), the structure was easily solved by direct 

methods.'^®' Further crystallographic information is listed in Table 5-1. Atomic 

coordinates and isotropic displacement parameters are given in Table 5-2. More details of 

the structure will be discussed in reference to A-NbsTel?. 

/j-NbsTelv 

A-NbaTel? was discovered from a series of reactions of the elements in the ratio 

3Nb:Te;7I at seven temperatures: 350°, 400°, 500°, 600°, 650°C, 700°, 800°. No 

NbsTel? phases were observed in reactions at 900° and 1025°. All reactions were carried 
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Table 5-1. Summary of crystallographic data for /ic-NbsTel? 

Formula weight 1294.63 
Crystal system Hexagonal 
Space group P63mc (No. 186) 
Color of crystal black 
Dimensions of crystal (mm) 0.15x0.15x0.30 
Lattice parameters (A) 

a 7.6300(10) 
c 13.800(3) 

Vol. (A^) 695.8(2) 
Z 2 

(g cm'^) 6.180 

Dififractometer Siemens P4 
Radiation MoKa (X = 0.71073 A) 
Linear absorption coefficient 19.967 mm"' 
Transmission range, max / min. 0.741 /0.344 
Temperature of data collection 23°C 
Scan method 20-<o scan 
Scan speed Variable; 3 to 60°/min. in co 
hkl ranges -1 10 

-10^ 1 
-1 19 

20INK (d®8) 60.00 
Number refl. measured 1488 

No. unique 383 
No. observed (Fo > 4o(Fo)) 283 

Rint 0.1114 
Weighting scheme W-' = C7^(FO^) + 0.0399Fc^ 
No. parameters refined 25 
Residuals' 

Fo > 4<T(FO) R l =  0 . 0 5 2 0 ;  w R 2  =  0 . 0 9 5 9  
All data R l =  0 . 0 7 9 9 ;  w R 2  =  0 . 1 0 6 5  

GOF, All data'' 1.071 
Largest difference peak, e'/A^ 2.501 
Largest difference hole, eVA^ -2.789 

' R1 = SIIFol - IFcIl / Z|Fo|; wR2 = [I[w(Fo'.Fc')'] / Z[w(Fo')^]]''2 
•' GoF = S = [Z[w(Fo^ - Fe^)^] / (n - p)''^, where n = # reflections, p = total # parameters 

refined. 
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Table 5-2. Positional parameters and isotropic displacements parameters for/;c-Nb3Tel7 

Atom X y 2 Uc, 

Mb 0.8667(2) -X 1/4 (fixed) 0.0112(7) 
Te 0 0 0.1022(5) 0.0122(11) 
11 2/3 1/3 0.3563(6) 0.0142(13) 
12 0.1694(2) -X 0.3814(4) 0.0128(6) 
D 0.4979(2) -X 0.1375(5) 0.0147(6) 

out in evacuated pyrex or fused silica tubes, and the products identified by powder Guinier 

and single-crystal x-ray diflfraction. The temperatures used, and the products identified at 

each temperature are given in Table 5-3. The new polytype A-NbaTel? was first observed 

fi-om the 700°C reaction. This tube contained crystals of two visually dissimilar 

morphologies. The majority of the crystals were six-sided chunks, clearly of hexagonal 

symmetry. However, many crystals fi-om this tube had a trigonal, or triangular prismatic 

morphology. The Gumier pattern of samples of these crystals clearly differed from the 

pattern of the known phase Ac-NbsTel?, most diagnostically by the absence of one intense 

diffraction line. Theoretical Guinier powder patterns generated from single-crystal 

solutions of Ac-NbsTel? and /z-NbsTel? are compared in Figure 5-1. 

Structure of h-NbsTeh 

Triangular prismatic shaped crystals were of A-NbsTel? were eventually located in 

the reactions at 600°, 650°C, and 700°C. A crystal from the 650°C reaction was selected, 

mounted in a glass capillary, and aligned on a Siemens P4 diffractometer. The initial unit 

cell was determined on the basis of several reflections located with the aid of a rotation 

photograph. Axial photographs confirmed the cell edge lengths, and subsequently the unit 

cell was refined using 40 reflections fi-om 6° ^ 20 ^ 25°. A-NbsTel? forms in the trigonal 

system, Laue symmetry 3ml, with a = 7.642(1) A, c = 6.897(1) A, and V = 348.82(8) R. 
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Table 5-3. Identification of products fi-om NbsTel? reactions at various temperatures. 

Temp. Products (Guinier) Sample info. 
m 

350 Ac-NbsTel? + unknowns powder only 

400 ^-NbsTel? powder, few crystals 

500 //c-NbsTel? powder and crystals 

600 A-NbsTel? (minor) + //c-NbsTel? Several crystals 

650 A-NbsTel? + Ac-NbsTel? Crystalline pieces 

700 A-NbsTel? + /jc-NbsTel? + Nbslg Crystals 

800 A-NbsTel? + /jc-NbsTely Crystals 

900 No NbsTel? phases. Nb3Te4 + unknowns powder 

1025 No NbsTel? phases. Nb3Te4 + unknowns powder 

694 reflections were collected to 20nu« = 50°, of which 316 were observed. Psi-scans of 

several reflections for an empirical absorption correction were collected, and later applied 

to the data. The stucture was easily solved by direct methods using SHELXS-86,^®®' and 

refined with SHELXL-93.'®^ Table 5-4 summarizes other relevant crystallographic data. 

//-NbsTel? is the first example of polytypism discovered in the M3QX7 system. 

//-NbsTel? forms in the NbaSBr? structure type, space group P3ml, with one NbsTel? slab 

per unit cell. The mixed Te-I anion layer stacking sequence is (...ABAB...), or (...A...), 

fi'om which derives the nomenclatural choice. Unlike Ac-NbsTel?, where each successive 

NbsTel? slab is related to the next by a 63 screw axis, in A-NbsTel?, successive layers are 

directly "superimposed" on top of one another. Near-[100] and [001] views of this simple 

structure type are shown in Chapter One, Figure 1-14. Atomic coordinates and isotropic 

displacement parameters are listed in Table 5-5. Bond distances and angles for A-NbsTel? 

are listed in Table 5-6, and as expected are quite similar to those in //c-NbsTel?, also in 

Table 5-6. 
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(a) /jc-Nb3Tel7. 
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(b) /?-Nb3Tel7. 

Figure 5-1. Comparison of the Guinier powder difiraction patterns of/j-NbsTel? and 
Ac-NbsTel?. The strong line present at 20 a 33.4° in only the /rc-NbsTel? 
pattern is the 203 reflection. 
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Table 5-4. Summary of crystallographic data for A-NbsTel?. 

Formula weight 1294.63 
Crystal system Trigonal 
Space group P3ml (No. 164) 
Color of crystal black 
Dimensions of crystal (mm) 0.1 X 0.1 xO.2 
Lattice parameters (A) 

a 7.642(1) 
c 6.897(1) 

Vol. (A^) 348.82(8) 
Z 1 
d^\c (g cm'^) 6.163 

Diffractometer Siemens P4 
Radiation MoKa (>. = 0.71073 A) 

Linear absorption coefficient 19.913 mm"' 
Transmission range, max / min. 0.922/0.815 
Temperature of data collection 23°C 
Scan method CO scan 
Scan speed Variable; 2 to 45°/min. in co 
hkl ranges -1 8 

- 9 ^ k ^ \  
- 1  ̂ / ^ 8  

20m« (deg) 50.00 
Number refl. measured 694 

No. unique 323 
No. observed (Fo > 4<j(Fo)) 316 

Riat 0.0439 
Weightmg scheme w-' = a^(Fo^) + 0.0317Fc^ 

No. parameters refined 25 
Residuals' 

Fo > 4a(Fo) R l =  0 . 0 2 6 4 ;  w R 2  =  0 . 0 5 8 8  
All data R l =  0 . 0 2 6 8 ;  w R 2  =  0 . 0 5 9 0  

GoF, All data" 1.211 
Largest difference peak, eVA^ 1.26 
Largest difference hole, e"/A  ̂ -3.183 

' R1 = ZliFol - IFcll / Z|Fo|; wR2 = [2[w(Fo'-Fc')'] / SCwCFo^)']]"" 

^ GoF = S = [S[w(Fo^ - F/)^] / (n - p)"^, where n = # reflections, p = total # parameters 
refined. 
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Table 5-5. Atomic coordinates and isotropic displacements parameters for /j-NbaTel?. 

Atom X y z Ucs 

Mb 0.86658(9) -X 1/2 (fixed) 0.0095(3) 
Te 0 0 0.2015(4) 0.0104(4) 
11 2/3 1/3 0.7129(3) 0.0115(4) 
12 0.16938(8) -X 0.7637(3) 0.0121(3) 
D 0.49855(7) -X 0.2747(3) 0.0135(3) 

Table 5-6. Bond distances (A) and selected bond angles (deg) in h- and /jc-NbaTel?. 

Bond //-NbsTelv Ac-NbsTel? 

Nb-Nb 3.059(2) 3.052(5) 
Nb-Te 2.713(2) 2.695(6) 

Nb-Il (ns'-I) 3.0262(15) 3.023(5) 

Nb-I2 (^2-1) 2.737(2) 2.731(4) 
Nb-I3 (Hz"-!) 2.9122(12) 2.911(4) 

Angle 

Nb-Nb-Nb 60.00 60.00 
Nb-Te-Nb 68.64(6) 69.0(2) 
Nb-Il-Nb 98.45(5) 98.5(2) 
Nb-I2-Nb 67.94(6) 67.9(2) 
Nb-I3-Nb 103.80(6) 103.7(2) 
Te-Nb-Il 159.65(7) 159.9(2) 
Te-Nb-I2 110.54(4) 110.39(11) 
Te-Nb-I3 86.43(5) 86.55(15) 

It is tempting to speculate on the effect of temperature on the distribution of the 

two NbsTel? polytypes, since a dependence on temperature is observed (Table 5-3). To 

wit, //-NbsTel? seems to be favored at higher temperatures, as it was not observed at 

temperatures of below 600®C. A question of how to assign relative abundances of the two 

polytypes in these mixtures is apt. Visual estimates are clearly dubious, since the phases 
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often form as large, solid silver plugs whose morphology is not evident, and because 

taking powder patterns of every bit of material in the tube is impractical. A more sinister 

complication is how to determine if samples of /ic-NbaTel? contain any //-NbsTel?: 

because the simpler /j-NbsTel? pattern is virtually identical to the /jc-NbsTel? pattern 

except for the absence of a particular line (see Figure 5-1), Ac-NbsTel? can always be 

conclusively identified, whereas /j-NbsTel? cannot. If the /i-NbaTel? pattern is 

superimposed onto the /jc-NbaTel? pattern, it will be undetectable. In order to minimize 

this problem, small single ciystal samples were used whenever possible, but because of 

their small size, often several crystals or larger samples less likely to be homogeneous 

were used. Because of this problem, estimates of which phases form at which 

temperatures are probably skewed in favor of Ac-NbsTel?. 

Tas-xNbxTely (0<x<3) 

Synthesis of Tas-zMbxTeh 

To investigate the questions posed in the Introduction section concerning mixing, 

we chose first the telluride iodide system Tas-xMbnTel? to study, partially due to the fact 

that iodide systems seem to form the highest-quality crystals most readily. This is 

important smce single-crystal x-ray diffraction will be the first and most important 

characterization tool. 

Tas-xNbxTel? were prepared according to Equations (1) and (2): 

(3-x) Ta + X Nb + Te + 7/212 = Tas-xNbxTel; (1) 

2 TasTelv + NbjTel? = 3 Ta2NbTel7 (2) 

Tas-xNbxTel? reactions from the elements were done at x = 1, 1.5 and 2 (Equation 

(1)). Also, reaction of the pure ternary compounds was done, at a 2:1 TasTel? : NbsTel? 

ratio (Equation (2)). Reagents used were; Nb foil (0.025 mm thick, cut in small strips; 

Alfa, 99.99%); Ta (Alfa, 99.995%. Foil, 0.127 mm, cut in approx. 2 mm x 20 mm strips). 
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Te (Alfa); I2 (Alfa, resublimed, 99.99%). Both metal foils were cleaned with an HF/HNO3 

mixture to remove surface impurities, then dried in vacuo at T > 500°C before use. The 

tellurium was thrice-sublimed at 450°C under dynamic vacuum and stored in the glove 

box. 

Initial reactions were carried out at 450°C, the optimum temperature for 

preparation of /jc-TasTel?. Higher temperatures were avoided due to the apparent 

instability of pure /ic-TasTel? above ca. 560°C. Subsequently, re-heating, or "annealing" 

steps were performed at temperatures of 450°C and under chemical transport conditions 

through a temperature gradient of 545-505°C. The latter conditions were found to be 

optimum for growth of the best Tas-^Nb^Tel? crystals, which were always found 

transported to the cooler end of the tube. In all cases reported below, the same batch of 

sample was carried through all steps, i.e., the product from the initial reaction was ground, 

re-loaded and used for the re-heatings. The purpose of these re-heating steps was both to 

grow more and better crystals than what was available from the initial reactions, and to 

determine if re-grinding and reheating samples would result in the same Ta;Nb mbdng 

ratio observed in antecedent reactions. 

Characterization of Toi-xMbxTeh 

Initially, the question of whether Nb and Ta would even mbc in this system was 

conclusively answered using the independent characterization tool of scaiming electron 

microscopy. Multiple single crystals from the each of the various reactions (x = 1, 1.5, 2, 

and premade ternary, all temperatures) mentioned above were studied using a JEOL 6100 

scanning electron microscope. The simultaneous presence of both niobium and tantalum 

in all samples was clear from the strong characteristic emission peaks for tantalum at 

1.710 keV (Ma) and for niobium at 2.164 keV (La), which appeared in all spectra. The 

SEM also verified the presence of Te and I in all samples as well. 

For a more quantitative analysis of the Ta/Nb content, samples from the x = 1, 1.5 

and 2 reactions were studied using x-ray photoelectron spectroscopy. A PHI 550 Multi-

Technique surface analyzer instrument was used, and all samples were prepared, mounted. 
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and transferred to the instrument under inert atmosphere. In all cases, pristine, crystalline 

samples from a reaction at 545-505°C, were used, after identifying the product by x-ray 

powder dLBfraction. Along with confirming the mixed composition, the XPS experiment 

provided binding energies corresponding to reduced metal atoms: Nb Sd^a, 203.6 eV; Ta 

4f7/2, 23.4 eV. The tantalum binding energy agrees very well with that measured for the 

pure TasTel? phases (Chapter Two, Table 2-4). 

Several crystals from each system and reaction were studied by single crystal x-ray 

diffraction using a Siemens P4 diffractometer. Since the x-ray scattering factors of Nb and 

Ta are quite different due to the wide separation in atomic numbers between the two 

elements, single-crystal x-ray diffraction is an excellent method for the determination of 

the relative content of each metal in a given crystal. In addition to single-crystal work, 

carefiil Guinier powder diffraction studies of most reactions were performed to at least 

qualitatively identify polytypes formed from each set of conditions that may not have 

yielded diffraction-quality single crystals. 

Tables 5-7 through 5-10 gather together the results of all single-crystal solutions 

from the Ta2NbTel7, Tai,5Nbi.jTel7, TaNbjTel? and 2 TasTel? + NbsTel? reactions and 

re-heatings. These tables list selected data collection information, hexagonal lattice 

parameters, R-factors, and the refined composition determined from all the crystals. 

Lattice parameters for pure NbsTel? and TasTel? are also given, in Table 5-7. 

TasNbTelv {x = \) 

16 solutions from three reactions are in Table 5-7. All single crystals formed the 

Ac-type stacking variant (NbsSel? structure, space group P63mc, c axis length near 13.9 

A). Metal compositions refined from the single-crystal data range from Tai.74Nbi^ to 

TaidsNboji. Most, however, were very near "Ta2Nb". Interestingly, the first annealing 

reaction (45 days at 450°C) yielded compositions on average higher in Ta than either the 

initial 450°C reaction or the subsequent 500-475°C reaction. The XPS experiments 

corroborated the compositions refined from single crystal data. The average metal ratio 

from several samples of large crystals from this reaction was found to be "Tai.8oNbi.2o"-
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Table 5-7. Summary of crystallographic results for "Ta2NbTel7" reaction products. 

Crystal Lattice Parameters (A) Observed R1 Refined 

ID a c R(int) # Data Unique (>2aFo) Fo>4oFo wR2 Composition * 

Initial reaction, 450°C, 2 wks. All data sets collected to 20m.x • = 50.00°. 

250-5 7.598(1) 13.866(3) 0.0613 1188 288 278 0.0370 0.0839 Tai,94Nbi.o6Tel7 

362-2 7.590(1) 13.897(3) 0.0832 1189 287 250 0.0277 0.0493 Ta2.67Nbo.33Tel7 

Annealed, 450°C, 45 d. All data sets collected to 20m»x = 50.00°. 

405-3 7.584(1) 13.894(3) 0.1022 1185 286 248 0.0379 0.0618 TazjoNbo.5oTel7 

405-4 7.590(1) 13.886(3) 0.0588 1185 286 267 0.0344 0.0786 Tax39Nbo.6iTel7 

405-5 7.587(1) 13.889(3) 0.0522 1185 286 267 0.0399 0.0935 Ta2.2oNbo.8oTel7 

406-3 7.590(1) 13.888(3) 0.0809 1185 285 255 0.0392 0.0794 Ta2.4iNbo.39Tel7 

406-4 7.586(1) 13.892(3) 0.0956 1185 286 244 0.0354 0.0634 Tai4jNbo.5}Tel7 

406-5 7.589(1) 13.885(3) 0.1028 1185 286 245 0.0432 0.0864 T a2.43Nbo.j7T el7 

Annealed in gradient, 500 - 475°C, 14 d. All data sets collected to 20nux = 50.00°. 

456-la 7.601(1) 13.883(3) 0.0526 1184 289 274 0.0305 0.0653 Ta 1.97Nb 1,03Tel7 

456-2 7.599(1) 13.883(3) 0.0689 1192 289 280 0.0349 0.0803 Ta1.96Nb1.04T el7 

458-4 7.600(1) 13.880(3) 0.0404 1185 289 282 0.0240 0.0630 Tai.73Nbi.27Tel7 

459-2 7.600(1) 13.882(2) 0.0608 1193 289 279 0.0220 0.0518 T a2.07Nb0.93T el7 

* The esd on the metal compositions in all cases is ^ 0.01, i.e., Ta2.o7(i)Nbo.93(i) is the upper error limit. 
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Table 5-8. Summary of crystallographic results from "Tai.j Nbi.jTel?" reactions. 

Crystal Lattice Parameters (A) Observed R1 Refined 

ID a c R(int) Data Unique (>2aFo) Fo>4oFo wR2 Composition' 

Annealed in gradient, 545 - 505°C, 30d All data sets collected to = 50.00°. 

525-1 7.620 6.913 0.0285 692 321 320 0.0228 0.0603 Ta,.34Nbi,66Tel7 

Table 5-9. Summary of crystallographic results from "TaNb2Tel7" reactions. 

Crystal Lattice Parameters (A) Observed R1 Refined 

ID a c R(int) Data Unique (>2aF„) Fo>4aFo wR2 Composition * 

485-1 7.624(1) 6.905(1) 0.0411 964 512 486 0.0279 0.0629 T ao.ggNbi ijT el? 

485-2 7.624(1) 6.901(1) 0.0518 1232 656 612 0.0308 0.0759 Tao.seNbiMTel? 

485-3 7.624(1) 6.905(1) 0.0434 963 512 487 0.0259 0.0558 T ao.goNb2.20T ely 

485-6 7.622(1) 6.905(1) 0.0574 964 512 510 0.0271 0.0702 T ao.g2Nb2.1 gTel? 

485-7 7.622(1) 6.902(1) 0.0358 686 318 317 0.0232 0.0552 Tao.g6Nb2.i4Tel7 

* In all cases, the esd of the metal compositions are ^ 0.01, i.e., Tao.g6(i)Nb2,i4<i) is the upper error limit. 
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Table 5-10. Summary of crystallographic results from "2 TaaTel? + NbaTel?" reactions. 

Crystal Lattice Parameters (A) Observed R1 Refined 

ID a c R(int) Data Unique (>2oF„) Fo>4oFo wR2 Composition' 

Annealed in gradient, 545 - 505°C, 30d All data sets collected to = 50.00°. 

490-1 7.599(1) 13.880(3) 0.0738 1190 289 271 0.0250 0.0509 Tai.goNbi.ioTel? 
490-2 7.601(1) 13.886(3) 0.0560 1190 289 lis 0.0239 0.0562 Tai.89Nbi.iiTel7 

490-4 7.599(1) 13.892(3) 0.0523 1194 289 286 0.0228 0.0512 Ta i.5r7Nb 1 .osTel? 

490-5 7.604(1) 13.888(3) 0.0528 1185 289 273 0.0270 0.0508 Tai .9 iNb 1 .ogTelv 
490-8 7.597(1) 13.892(3) 0.0497 1193 289 277 0.0229 0.0516 Tai.78Nbi.22Tel7 

* In all cases, the esd for the metal compositions is ^ 0.01, i.e., Tai.78<i)Nbi.22(i) is the upper error limit. 
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The /i-polytype was observed by Guinier powder diffraction from a reaction at 

545-505°C, but no XRD-quality single crystals of "/r-Ta2NbTel7" were ever found. The 

/»-polytype from this reaction formed only as a microcrystalline solid in very low yield, and 

was not subjected to XPS analysis. 

Tai.5Nbi.5Tel7 (a: =1.5) 

Crystals from this system were not abundant. An acceptable solution was obtained 

from only one crystal, from an annealing reaction heated in a 545-505°C gradient for 4.5 

weeks (Table 5-8). Reactions generally yielded large chunks of crystalline solid. The one 

crystal adopted the A-type, with a metal composition of "TaujNbi.e?". Both the h- and 

the Ac-polytypes were observed by Guinier patterns, however. Suitable single crystals of 

the /jc-type never formed from x = 1.5 reactions. Two poor solutions of the Ac-types 

indicated an Ta.Nb ratio of about 1:2. XPS results from a large single crystal sample gave 

"Ta1.26Nb1.74" as the metal ratio. No indications of a tantalum-rich sample were found 

from XPS or single crystal work. 

TaNbiTelv {x = 2) 

Both the //- and /7c-types were observed in the Guinier patterns, though high-

quality crystals, and thus single-crystal solutions were limited to only the /j-type. The 

refined compositions from five crystals of A-Tas-xNbxTelT from the same reaction are all 

within ± 0.04 moles of "Tao.84Nb2.i6" (Table 5-9). To determine the composition (metal 

ratio) of the Ac-type found in the Ta Nb2 system, XPS was done on large /rc-type crystals. 

The XPS gave a metal composition of "Tao.66Nb2j4". Interestingly, a few Ac-type crystals 

were collected on the Siemens P4. The refined compositions were very Ta-rich, near 

"Ta2Nb". This data is very suspect, however. Even though there was little indication of 

poor crystal quality during pre-collection searching or during the collection (Narrow, 

gaussian peak profiles, straightforward indexing of the NbsSelv-type cell), these crystals 

turned out to be of poor quality, exhibiting many large systematic absence violations of the 
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c-glide operation in the space group P63mc. Crystals defective in this way are common 

from all TasQX? systems that adopt the /jc-NbsSel? structure type. 

2 TasTel? + NbsTel? 

Both polytypes were observed from Guinier diffraction. Four single crystals of the 

/jc-type were found to be suitable XRD quality. Their compositions are narrowly 

distributed around "Tai.9Nbi.i". A crystallographic summary from these four crystals is 

given in Table 5-10. XPS corroborated these results, yielding a metal composition of 

"Tau7Nb,.,3". 

Conclusions 

Though only three Tas-xNbxTel? points (x = 1, 1.5, and 2) were studied, several 

conclusions can be drawn. First, niobium and tantalum readily mix onto the metal site 

over at least the substitutional range 0.31 ^ x ^ 2.20, but probably over the complete 

range x e (0,1). Furthermore, both h- and the Ac-type stacking variants were observed at 

all values of x. However, the distribution of these types was not random in any given 

system. This is especially demonstrated by the NbTa2Tel7 system, where only a small 

amount of the //-type was ever identified. At the same time, large quantities of the Ac-type 

were readily made. This implies a preference for Ta-rich systems to adopt the Ac-type. 

Niobium-rich systems, on the other hand, formed both types readily. There seems to be a 

tendency of decent crystals to form only when the metal content is right. Nb-rich favors 

the A-type, and will not form good crystals in the Ac-type, and vice versa. The most 

interesting reaction from this point of view is the equimetallic x = 1.5 case. We ioiow that 

both types will form. The question this system could answer is; will the metaJ content 

correlate with structure type? Evidence to the contrary exists only from the Nb2Ta case, 

which yielded abundant crystals of the A-type only. However, XPS results on the Ac-type 

gave a similar composition as refined from single crystal data, implying any metal ratio 

could form in any structure type. 
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For crystals and crystalline samples unsuitable for single-crystal x-ray dififraction, 

x-ray photoelectron spectroscopy was used to determine the Ta:Nb ratio. These XPS 

experiments generally provided tantalum and niobium compositions that agreed well with 

the loaded stoichiometry, regardless of structure type. 

Since only the structure types corresponding to the those of the known ternary 

phases were observed, it appears clear that upon Ta-Nb mixing the tantalum and niobium 

atoms are distributed throughout the structures in such a way that the x-ray diflfraction 

experiment can detect no ordering. The identity of the atoms within individual M3 clusters 

in the ^[MsTel?] slabs, though, is uncertain, and cannot be determined 

crystallographically. Conceivably, the observed h- and /jc-types could contain randomly 

distributed mixtures of homonuclear Nbs and Taa clusters, randomly distributed mixtures 

of heteronuciear "Ta2Nb" and "TaNb2" clusters, or mixtures of all four cluster types, and 

so long as the relative abundances of the various cluster species add up to the observed 

composition, the result would be the same to x-rays. However, all attempts to elucidate 

the local cluster bonding picture using other characterization techniques were 

unsuccessful. Solid-state NMR (the quadrupolar nuclei '"Ta, and '^Te could all 

theoretically be used) was an encouraging candidate because of the high relative 

receptivity of the nucleus, indicative of an atom that produces a strong signal. 

Unfortunately, the relaxation times were apparently too short on the NMR timescale to 

measure a signal, probably due to the tightly bound, eight-coordinate environment of the 

metal atoms providing abundant relaxation pathways. Atomic Force Microscopy was also 

tried, and although this technique did verify the hexagonal a lattice constants and the 

surface corrugations on both sides of the I [MsTel?] slabs, features below the anion 

surface Cm the metal layers) remained shrouded. 
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The system Nb1.5Ta1.5SI7 

Motivation 

As discussed in Chapter Two, despite numerous reaction attempts a well-

crystallized hexagonal TasSI? has not been synthesized. Instead, the new ternaries Ta4SIii 

and o-TasSI? form abundantly. The impetus for this mixing sudy was to stabilize tantalum 

in a hexagonal form. Note: the prefix ''he" again refers to the anion stacking sequence 

(...ABCB..., or ...he...), and serves to specify the NbsSel? structure type (space group 

P63mc, two slabs per unit cell), as described in Chapter One. 

/jc-Tas-xNbxSIv 

Synthesis 

Synthesis of /jc-Tas-xNbxSI? can be achieved from stoichiometric reaction of the 

purified or cleaned elements in sealed, evacuated pyrex or fused silica tubes from 400 to 

550°C for ca. two weeks, according to Equation (3): 

(3-x) Ta(foil) + X Nb(foil) + 1/8 Sg + 7/2 h = Taj-xNbxSI? (3) 

Such reactions yield plentiful hexagonal pyramidal black reflective crystals, as well 

as polycrystalline material. The powder patterns of Ta4SIu, and 0-M3SI7 can also be 

identified by Guinier difiraction, but these are minor constituents. By visual estimate, the 

Ta4SIii and 0-M3SI7 together amounted to less than 15% total product. The best 

/ic-Tas-xNbxSI? crystals were found in tubes heated either in a temperature gradient of 545-

505°C for a few weeks, or at 500°C for two weeks, and are transported to the opposite 

end of the tube. They vary in size fi-om near-microcrystalline to a few millimeters in 

length. In reactions conducted above 550°C, the only products identifiable by Guinier 

powder diffraction are TaS:, TaJi4, and Tals. 
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Characterization 

Guinier powder diffraction of several individual samples of the hexagonal pyramid 

crystals indicate adoption of the NbsSel? structure type. This might be the expected result 

since both NbsSI? and TaaSI? have been observed in this type, though only small amounts 

of polycrystalline TaaSI? have been synthesized. Additionally, several single crystals were 

analyzed with a JEOL 6100 scanning electron microscope for elemental content, which 

showed the presence of only Nb, Ta, S, and I in all samples. 

Structure and composition 

Four hexagonal pyramidal ciystals from two reactions (500°C for 13 days and a 

sample that was ground and re-heated in a temperature gradient of 545-505°C for 4 

weeks) were mounted on a Siemens P4 diffractometer for intensity data collection. 

Collection information common to all data sets in given in Table 5-11. The structures 

were solved by direct methods and refined using after applying a psi-scan 

Table 5-11. Crystallographic data for common to all Tas-^Nb^SI? solutions. 

Crystal system Trigonal 
Space group P63mc(No. 186) 
Crystal color, habit black, hexagonal pyramids 
Lattice parameters (average. A) 

a 7.553(1) 
c 13.540(3) 

Vol. (A )̂ 669.53(10) 
Z 2 
dcjc (g cm*') 6.599 
Diffractometer Siemens P4 
Radiation Mo Ka,X = 0.71071 A 
Temperature of data collection 23°C 
Scan method 0) scan 
Range in hkl 

-1 13 
20nux (deg) 50.00 
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absorption correction to the data. Structure solution was straightforward using /ic-NbaSI? 

as a model. A summary of each solution is given in Table 5-12. A description of a typical 

structure solution now follows. Initially, the sulfur and iodine positions were kept fully 

occupied and the mixed-metal site was allowed to refine, indicating a metal composition 

slightly Nb-rich, at "Tai.4>ibi.6". At this point problems with the capping (sulfur) site 

became apparent, as the sulfur isotropic thermal parameter shrank to zero when refined as 

fiilly occupied by sulfur, mdicating greater electron density on this site. This effect was 

attributed to partial S/I mixing. Refinement of the capping site as a mixed sulflir-iodine 

position was carried out by fixing all occupancy and thermal parameters except the sulfur 

site occupation factor. The sulfur SOF rose to 1.28 upon doing this. Assuming the extra 

electron density comes fi-om partial iodine mixing, the SOF indicated a S/I ratio of -90% 

S to 10% I. The atomic ratio was then set at this value and allowed to refine, constrained 

to a total occupancy of 100%. The final percentages were: 89% S, 11% I. R-factors 

dropped significantly as a result, from 0.030/0.065 to 0.027/0.057 (Rl/wR2). 

Subsequentiy, isotropic thermal parameters were included in the refinement. Eventually, 

all thermal parameters and occupancies were allowed to refine anisotropically, with the S 

and I constrained as equal. Throughout all refinement steps, the z-coordinate for the 

mbced S/I capping site was kept as one coordinate and not split into two positions, even 

though the distances fi'om the cluster to the sulfur and iodine should be different. This is 

reflected in the U33 displacement factor, which is about three times larger than the Un / 

U22 values. Consequentiy the M-cap distance reported below is an average distance 

consisting of an 88% contribution fi-om the M-S length and a 12% contribution fi-om 

M-Icap. Atomic coordinates, isotropic thermal parameters and site occupation factors for a 

representative "Ta1.40Nb1.60S0.8sI7.15" solution are given in Table 5-13. Anisotropic 

displacement parameters are given in Table 5-14, and average bond distances and angles 

fi'om the four essentially identical solutions are given in Table 5-15. 
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Table 5-12. Summary of Tas.xNbxSI? single crystal results. 

irom initial reaction. 500°C, 13d Reheated, 545 -505°C, 30 d 

Crystal ID 515-1 516-1 630-1 630-2 

Absorption coefF. (mm"') 29.71 26.10 29.78 29.81 
Number refl. measured 1237 1238 1232 1201 

No. observed (I > 2ai) 1155 1155 1152 1125 
No. uiuque 278 278 278 278 
No. unique observed 276 277 277 277 

R(int) 0.0533 0.0473 0.0418 0.0528 
No. parameters refined 28 28 28 28 
Data-parameter ratio 10 10 10 10 
Largest difTerence peak 0.99 0.79 0.69 0.96 
Largest difference hole -2.14 -0.87 -1.30 -0.94 
Residuals* 

R (observed) 0.0210 0.0188 0.0183 0.0235 
Rw 0.0408 0.0443 0.0435 0.0459 

GoF 1.205 1.119 1.170 1.105 

Refined Tai,4io(3)Nbi.}90(j) Tai.376(j)Nbl.624{3) Tai.347{4)Nbl,6J3(4) Tai.436(5)Nbl.564(3) 
Composition So.8j9(2)l7.j41(2) So.84(H2)l7.160(2) So.892(2)l7.108(2) So.883(2)l7.u7(2) 

• R = E|1F„| - IFell/ZlFol; R« = [Iw(|F„| - IFcD'/EwCFo)"]""; w = l/o'(Fo). 
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Table 5-13. Atomic coordinates, site occupation factors (SOF), and isotropic thermal 
parameters for a representative "Ta1.jNb1.3SI7" crystal. (Refined 
composition Tai,4il^i.59So.gJ7.i4, crystal "515-1" in Table 5-12). 

Atom X y z Uc, SOF 

Ta 0.8695 -X 1/4 0.0093(3) 0.470(5) 

Nb 0.8695 -X 1/4 0.0093(3) 0.530(5) 

S 0 0 0.3864 0.026(2) 0.859(2) 

^cjp 0 0 0.3864 0.026(2) 0.141(2) 

11 1/3 2/3 0.6438 0.0115(4) 1.0 

12 0.8310 -X 0.6135 0.0137(4) I.O 

13 0.4970 -X 0.3649 0.0122(3) 1.0 

Table 5-14. Anisotropic displacement parameters in Tai.4iNbi.j9So,g6l7.i4 
(Crystal "515-1" in Table 5-12). 

Atom Ull=U22 U33 U23 - -Ui3 U12 

Ta,Nb 0.0080(3) 0.0125(4) 0.0000(2) 0.0044(3) 

S, leap 0.010(2) 0.059(5) 0.000 0.0049(10) 

11 0.0088(5) 0.0168(8) 0.000 0.0044(3) 

12 0.0114(5) 0.0177(6) 0.0024(2) 0.0051(4) 

13 0.0097(4) 0.0163(5) -0.0012(2) 0.0043(4) 

Uij = exp(-27i^(a*^t/,ih^ + b*^C/22k^ + + 2a*b*C/i2hk + 2a*c*C/i3hl + 2b»c»6^23kl)) 
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Table 5-15. Average bond distances (A) and selected bond angles (deg) in 
Ta1.jNb1.5SI7. The average of the four data sets is given. Values for 
NbaSI? are given for comparison. 

Bond Ta1.4Nb1.6S0.85I7.15 NbsSI? 

M-M 2.959(1) 2.995 
M-S 2.517(5) 2.404 

M-Il (ns"-!) 3.020(1) 2.993 
M-I2 (^la'-I) 2.730(1) 2.737 
M-I3 (^2"-!) 2.917(1) 2.906 

Angle 

M-M-M 60.0 60.0 
M-S-M 72.0(2) 72.7 
M-Il-M 99.17(4) 98.8 
M-I2-M 65.62(4) 67.1 
M-I3-M 104.04(5) 103.6 

Discussion 

Tantalum can be readily stabilized in the //c-NbsSel? structure type in the mixed-

metal compound Tas-xNbxSI? (x « 1.6). Although only one point on the Tas-xNbxSI? 

continuum was studied (x = 1.5), results from the Tas-xNbxTel? study (above) imply a full 

Ta-Nb substitutional range is probably possible. 

Along with the Ta-Nb mixing, the metal triangle 113' capping position appears to be 

occupied by a mixture of sulflir and iodine, to the extent of about 90% S, 10% I. This 

phenomenon has a precedent in the studies of the system NbsSi.ylT+y by Miller and Lee.^®^' 

They found that iodine and sulfur mixed readily on the capping site over the complete 

range of^*, and that a structure type dependence on y occurred. Compounds having y > 

0.5 (iodine-rich) adopted the Nbalg structure (Chapter One), and those with y < 0.5 

(sulfur-rich) adopted the NbaSI? structure (NbsSel? type). The Tas-xNbxSI? system 

appears to follow this trend also, adopting the /jc-NbsSI? structure at the sulfur-rich 

composition studied. No attempts to synthesize a Tas-xNbxSi.ylv+y phase with lesser sulfur 

content were made. 
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The system NbuTai.sSBry 

Motivation 

The sulfide bromide pair TasSBr? and NbsSBr? offers an interesting opportunity 

for a mixed-metal study, because of the different structures adopted by the two. These 

structures have been discussed at length in Chapter Three. This pair in fact represents the 

only Ta-Nb analogues discovered thus far in the M3QX7 system that are not isostructural 

with each other. In a mixed Tas-xNbxSBry system, which of the two structures will be 

preferred? Will the relative amounts of each metal play a role? The equimetallic case (x = 

1.5) was investigated in an attempt to answer these questions, and the results are 

discussed below. 

Results 

Synthesis 

Stoichiometric reaction of the elements according to Equation (4) at 475°C in 

1.5 Ta (foil) + 1.5 Nb (foU) + 1/8 Sg + 7/2 Brz = Nbi.5Ta,,jSBr7 (4) 

evacuated pyrex or fiised silica tubes for four weeks yields reflective black pyramidal 

crystals and polycrystalline material whose Guinier diffraction pattern matches TaaSBr? 

and NbaSBr?. 

Choa-acterization 

Black irregular prismatic crystals were mounted in air onto glass fibers, and aligned 

on a Siemens P4 diffractometer. After centering several reflections located with the aid of 

a rotation photograph, a C-centered monoclinic unit cell was indexed, corresponding to 

the TaaSBr? type. Both axial photographs as well as the Siemens P4 search routine 

designed to check for different symmetry or unit cell size confirmed the monoclinic cell. 

This cell was then refined with 45 more reflections in the angular range 14® ^ 20 ^ 27°. 
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The final diffractometer-determined lattice constants are: a = 12.256(2) A:, b = 7.075(1) 

A, c = 8.775(2) k, P= 133.93(3)°. Complete intensity data sets (sphere, collected with 

the lattice centering restriction only) were collected for several such crystals. The 

structure was easily solved in the space group Cm using TasSBr? as a model, and allowing 

the metal sites to refine as a mixture of Ta and Nb. The solutions, although not of high 

quality, were enough to verify the adoption of the TasSBr? structure type and to determine 

a rough tantalum-niobium content in the crystals. 

All Nbi.5Tai.5SBr7 single crystals have given only tantalum-rich refinements. The 

best solution, refined to a composition "Ta228Nbo.72SBr7". The other data sets gave 

similar metal ratios. Although the R-factors are high (R1 = 6.58%, wR2 = 16.97%), the 

data do at least indicate a significantly greater percentage of tantalum, even though the 

reaction stoichiometry was 1:1. 
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CHAPTER SIX 

GENERAL CONCLUSIONS 

Several new tantalum chalcx>genide halide compounds, most with the general 

formula TasQX? (Q = S, Se, Te; X = CI, Br, I), have been synthesized and characterized. 

These compounds represent the first examples of trinuclear clusters of tantalum 

discovered by traditional high-temperature solid-state chemistry techniques. Of these, 

/jc-TasTel?, /ic-TasSel?, TaaSBry, TasTeCI? have been thoroughly structurally 

characterized with single crystal x-ray diffraction methods. The five compounds 

^-TasSI?, o-TasSI?, TasTeBr?, TasSeBr?, and TaaSeCl?, while certainly known, are 

limited to powder diffraction characterization and are less well understood structurally and 

synthetically. A new structure type, the mixed-valent compound Ta^SIu, was discovered 

in the Ta-S-I system. The structure of this unusual compound could not be determined 

solely by x-ray diffraction methods due to extensive disorder. Additionally, the elements 

tantalum and niobium were shown to substitute readily for each other in the systems 

Tas-xNbxTel?, Tas-xNbxSI?, and Tas-xNbxSBr?, though whether the bonding within the 

trinuclear clusters is heterometallic or homometallic remains unclear. 

TasQX? and Ta4SIu all show similar temperature stability ranges, surviving to a 

maximum temperature of ca. 550°C, before decomposing to the pentahalides, hexanuclear 

cluster compounds and unknown products (presumably involving the chalcogen, though 

the fate of Q was only rarely detected using x-ray diffraction). This property distinguishes 

the chemistry of TasQX? fi-om the analogous niobium compounds NbsQX?, which were 

synthesized and are stable towards thermal decomposition at temperatures as great as 

900°C. It is uncertain exactly why the tantalum phases seem less thermally hardy, but the 

reason may be a reflection of the greater tendency of tantalum to engage in metal-metal 

bonding, which might favor the formation of the Ta^Xu and Ta«Xi5 compounds observed 

so fi-equently during the various syntheses. 

The facility with with these compounds were made and the variety of structures 

found point to a potentially very rich chemistry. The absence of such ternary cluster 
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chemistry heretofore when compared to similar elements, especially niobium, is almost 

certainly due to a lack of detailed study in the proper temperature region, and not to an 

inherent unreactivity of the element itself A particular problem in preparing new tantalum 

cluster phases might be the tendency to use as a synthetic starting point the chemistry of 

niobium. These two elements, rightfully notorious for being chemically similar, in 

actuality often behave quite differently. In the present case, initial investigations into the 

Ta-Q-X systems failed because the reaction temperatures chosen were too high. 

Synthesis, characterization, and purification of all TasQX? compounds (and 

Ta4SIii) benefitted greatly fi"om chemical vapor transport. The nature of the vapor-phase 

species responsible for transport is uncertain, though tubes viewed in the fiimace when 

still hot and during the cooling process visually deposit large amounts of the tantalum 

pentahalides, implicating this volatile species. Chemical transport is quite useful when 

separating the pure TasQX? material (and selecting crystals) fi-om bulk powders, as the 

transport of most TasQX? products is achieved and controlled readily. Large amounts of 

the pure crystalline solid can often be transported to the cooler end of the tube, over a 

timescale of a few days to a couple weeks. 

Chemically, these compounds are relatively fragile with respect to oxidation and 

reduction, and if induced to react usually do so at the expense of the cluster-containing 

layered structure. Various attempts to intercalate small atoms into the van der Waals gap 

resulted either in no reaction (in the case of neutral molecules like pyridine or water) or in 

destruction of the TasQX? fi'amework, as in the case of diverse reactions with alkali and 

alkaline earth metals, alkali metal salts, polychalcogenide fluxes and others. Appendix C 

contain a thorough record of all such reactions attempted and the products obtained. 

Some puzzling aspects of tantalum halide cluster chemistry remain, though, 

especially in light of the ready formation and stability of the trinuclear clusters in TasQX?, 

as demonstrated by this thesis. In particular, TasXg, the tantalum analogues of NbsXg, do 

not form even in the temperature regions that so readily gave TasQX?. Several attempts 

to make these elusive binary halides were carried out, with only Ta metal, Ta^Xu or 

TasXis and TaXj as the resuh. The absence of TasXg might be correlated with the refusal 
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of TaaQX? to be intercalated by one-electron donors, since supplying an electron to the 

LUMO of the six-electron metal-metal bonding system makes TasQX? isoelectronic with 

TaaXg. 

The investigation into the Ta-Q-X system was quite fruitful: "turning down the 

heat" expanded the solid-state cluster chemistry of tantalum significantly, and again 

demarcated this element from its lighter group member niobium with respect to the 

formation of new structure types (TasSBr?, A-TasTelX?) and Ta4SIii). Hints of an even 

richer chalcogenide halide chemistry arose from these studies as well, with some minor 

side products giving a tantalizing glimpse into further tantalum chalcogenide halide 

possibilities. Appendbc B contains these exciting discoveries. 
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APPENDIX A: SUMMARY OF ALL Ta-Q-X REACTIONS 

ATTEMPTED, AND PRODUCT IDENTIFICATION. 

Numbers indicate separate reactions; multiple temperatures means the product from the 
previous line was re-loaded and annealed at the conditions indicated. In order from lowest 
temperature to highest. 

IODIDES 

Ta-Te-I: 

Reaction / annealing Products identified by Guinier powder page # and 
temperature diffraction notebook 

TasTely 

1. 300°C, 13d Ta + TaTe2 + Taj,4 + Tals p219nb3 

2. 400°C, 10.5d Ta + TaTe2 + TaJu + Talj p220nb3 

3. 425°C, 4wks A-TasTel? + hc-TniJeh + Ta6li4/Talj + Ta p9nb5 

4. 450''C, 15d Ac-TasTel? + "Ta«Te4-JkhxO" + TaTej + Tal, p231,270nb3 

5. 450°C, 17d Ta +/jc-TasTel? + A-TasTelv + Tals p276nb3 

6. 450°C, 14d (Ta powder) TaTe2 +/jc-TasTel? + Talj p27nb4 

7. 450°C, 7d Tc+/;c-Ta3Tel7 + Ta6li4/Tal5 p35nb4 

8. 450°C, 14d A-TasTel? +/jc-TaaTel? + TaJi^/Tals 
Ta + TaTe2 p44nb4 

9. 450°C, 7 wks /wj-TasTel? + A-TasTel? (quantitative) pl33nb4 

10.450°C, 14d Ta + A-TasTel? + "Ta«Te4-xIi(HcO" p29nb4 
575°C, 9d A-TasTel? xtals +//c-TasTel? xtals + TaJu pl69nb4 
540 - 500°C A-TasTel? + TaJu + TaOl2 p37nb5 

11. 450°C, 3wks Ac-TasTel? + A-TasTel? + TaJiVTals p6nb4 
450 - 440°C, 9d A-TasTel? xtals + hc-Ta^Teh xtals pl88nb4 
450 - 425°C, lOd A-TasTel? xtals + Ac-TasTel? xtals pl88nb4 
625°C, 17d Taelu + Ta205 + Nb3Te4-Iike pattern p65nb5 
485°C, 16d Ac-TasTel? + A-TasTel? + orange unk. pll7nb5 
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12. 500°C, 2 wks Ta + A-TasTel? + Ac-TasTelv (minor) + TaJu p283nb3 

13. 540 - 440°C, 5d Ta + A-TasTel? + Ta^Iu + Tals p51nb4 

14. 540°C, 2Id Quantitative yield A-TasTel? (large scale) pl87nb4 

15. 540°C, 9d Ta + Ac-TasTel? + TaJi/Tals p37nb4 

16. 600°C, 9d Talj + TaJn + unknown*** pll2nb3 

17. 700°C, 9d Talj + unknown*** pll2nb3 

18. 800°C, 9d Talj + unknown black powder (strong)*** pll2nb3 

19. 

T3 O
 

C
J
 o
 

8
 

00 1 
o
 

00 

Talj + unknown*** pSnb3 

•**Saine unknown: a velvety black nonlustrous powder, chalky feel in mortar. 

Ta4Tel7 

Rationale: incorporation of more Ta into the vacancy site?? 
Reactions: 

1. 435°C, lOd Ta, Ac-+ A-TasTel? p57nb7 
500°C, 14d Ta, Ac-TasTel?, A-TasTel?, TaJu. p77nb7 

TasTele 

Rationale: To prepare a chalcogen-substituted hexanuclear TaeXn-containing phase 
Reactions: 

1. 675°C, 9.5d TaJu + unknown*** pl60nb4 
500°C, 25d A-TasTel? + Nb3Te4-like pattern + Talj p206nb4 

Ta3Te2l5 

Rationale: Attempt to make "Ta6Te4.xIio+xO" (see Appendix B). 
Reactions: 

1. 675°C, 10.5d TaTe2 +unknown*** 

2. 470 - 430''C, lOd "much unreacted stufl^ no visible mC xtals" p81nb4 
675 - 650°C, 10.5d TaJi/Talj + TajOj + unknown*** 

These two reactions were combined, and then heated as below: 
827°C, lOd Talj + Nb3Te4-like pattern (diff. unknown) p237nb4 

3. 450°C, 17d Ac-TasTel? + A-TasTel? + TaTe2 pl02nb4 
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TaTel2 

Rationale: Attempt to make Zrlj-type Ta-Te-I phase seen as side product in an earlier 
reaction (Ta^TeelgO, 432°C, 17d; pl5nb5) 

Reactions: 

1. 430°C, 21d ^-TasTel? + A-TasTel? + TaTe2 + Talj pl9nb7 

Ta-Se-I: 

Reaction / annealing Products identified by Guinier powder notebook & 
temperature diffraction page # 

Ta3Sel7 

1. 500°C, 18d y/c-TajSel? + Ta<;I,4 p284nb3 
450°C, 20d Ac-TasSel? xtals transported pl9nb4 

2. 450°C, 14<i /;c-Ta3Sel7 + TaJi4 +unknown** p28nb4 

3. 550 - 450°C, 14d /jc-TasSel? + TaJu only. Good transport. p92nb4 

4. 450®C, 16<I /jc-TasSel? + TaJu p232nb3 
450°C, 2wks /jc-TasSel: + unknowns pll4nb4 

5. 450°C, 3wks Ta +/jc-TajSel? + TaJi/Tals p277nb3 

6. 450°C, 3wks Ac-TasSel; + Ta6li4 + Tals p7nb4 
575°C, 9d /;c-Ta3Sel7 + TaJu +unknown** pl70nb4 
827°C, lOd Tube attack: TaO/TaaSi + unknowns** p237nb4 

TasSci.el? 

Rationale: Error in loading led to excess Se in these reactions. 

Reactions: 

1. 450°C, 7d Ac-TasSel? + TaJu + unknown** p34nb4 

2. 540°C, 9d Taj 14 + unknown** p36nb4 

3. 450°C, 14d /jc-TasSel? + unknown** +Talj p45nb4 

4. 530 - 440°C, 5d Ta + /ic-TasSel? + unknown** + Tals p48nb4 
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TasSele 

Rationale: To prepare a chalcogen-substituted octahedral Ta«Xi2-containing phase 

Reactions: 

1. 675°C, 9.5d unknown** + Tals + Ta205 
500°C, 25d Ac-TaaSel? + Ta^Iu + Tals + unknown** 

Ta4SeIn 

Rationale: Attempt to make selenium analogue of Ta4SIii 

Reactions: 

1. 425°C, 17d /jc-Ta3Sel7 + Ta6lij + TaJi4/Tal5 +unknown** 
500°C, 24d Ac-TasSel? + Ta^In + Talj + couple weak lines? 

Ta-S-I: 

Note: Frequently the same unknown phase, identified below as unknown "A" was 
observed. This phase was a non-lustrous, black powder that diffracted poorly 
(broad peaks, weak pattern). 

Reaction / annealing Products identified by Guinier powder notebook & 
temperature diffraction page # 

TasSIv 

1. 400°C, 13.5d Ac-TaaSIv + o-TasSlT + TajSIii+ Tal5 pl91nb4 
440°C, 17d maj. o-TasSI? + TaJu p71nb7 (II) 

2. 425°C, 2wks o-TasSI? + TaJu + little TatSIn p8nb5 
545 - 505°C, p23nb8 

3. 430''C, 15d o-TasSI? + TaJi/Talj + unknown "A" p85nb7 

4. 440®C, 17d maj. oTasSI? + TajSIn + Taglu p71nb7 (I) 
505 - 485°C. p23nb8 

5. 450°C, 16d (#1) o-TasSI? + TaJ,4 + Talj p233nb3 
450°C, 17d o-TasSIv + TaJi/Tals + TaOl2 p89nb4 

6. 450°C, 14d /jc-TaaSI? + Ta4SIii + Ta6li4yTal5 + 
unknown "A" p23,32nb4 

pl61nb4 
p205nb4 

pl33nb5 
p55nb7 



www.manaraa.com

163 

7. 450°C, 14d /ic-Ta3Sl7 + Ta4SIii + Ta<>I,4/Tal5 + 
unknown "A" p26nb4 

8. 450°C, 7d o-TasSI? + TaJi/Talj p33nb4 

9. 450-350°C,9d Ta,SIn + Taj,/Tals pl00nb4 

10. 450 - 350°C, 14d TaaSIj, + TaJi/Tals + unk. "A" p91nb4 
450°C, lOd Ta»SI,i + Ta6li4/Tal5 + unk. "A" pl31nb4 

11.450°C, 3.5d o-TasSI?, Taj,/Tals pl74nb4 
450 - 440°C, lOd Ac-TasSI? + o-TasSI? + TaiSI,, + TaJi4/Tal5 pl74nb4 

12. 500°C, I6d oTasSI? +/^c-TajSI? + Ta<sl,4 p285nb3 
575°C, 9d Taj,/Pais + TaOIa + unknown "A": 

13. 525°C, 17d Ta6li4 + Tals + unk. "A" (black powder) 

14. 530 - 440°C, 5d Ta + Ta4SI,, + TaJi/Tals + unknown "A" p47nb4 

15. 675°C, 10.5d Tals + few unknowns (TaO?) pl64nb4 

16. 675 - 650°C, 10.5d TaS2 + Ta«I,4 pl65nb4 
440°C, 17d TaJ,4/Tal5 + unknown "A" p73nb7 
550 - 440°C, unopened p25nb8 

Ta3S2l7 

1. 430°C, 15d o-TasSIy + Tafili/Tals + unknown "A" p85nb7 

TasSIg 

1. 675°C, lOd Ta<;Ii4/Tal5 + unknown! (•not* "A") pl62nb4 

TasSIs 

1. 432°C, 17d oTasSI? + unknown "A" (black powder) pl9nb5 

2. 432°C, 20d o-TasSI? + Ta4SIi, + unknown (weak) p71nb5 
525°C, 16d Taj,5 + at least two unknowns (not "A") pll9nb5 
430°C, 17d No transport, starting powder p57nb6 
545 - 505T, 30d TaJi4 + unknown ("A" ?) p43nb7 

3. 430°C, 15d o-TasSI? + TaJi4+unknown "A" p87nb7 
T h e  a b o v e  t h r e e  p r o d u c t s  c o m b i n e d  i n t o  4 . :  

4. 550 - 440®C, unopened p23nb8 
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Ta2Sl4 

1. 430°C, 15d 

TazSIa 

1. 432°C, 17d 

Ta2Sl2 

1. 430°C, 15d 

Ta2SI 

1. 450°C, 7d 
535°C, 20d 

2. 500°C, 13d 

TaS2l 

1. 450°C, 7d 

TaSl2 

1. 450°C,7d 

Ta4S6l 

1. 432°C, 17d 
535°C, 20d 

2. 500°C, 13d 

Ta4SIii 

1. 432°C, 20d 

2. 450°C, 14d 

Ta4SIu + Ta + unknown "A" p87nb7 

Ta metal + Ta4SIu (big xtals) + unk. "A" pl7nb5 

o-TasSI? + Ta4SIn + unknown "A" + 
other unknowns p89nb7 

Ta metal + unknown "A" (large yield) p208nb4 
Ta metal + TaSa (M0S2) + unknown "A" p83nb5 

2H-TaS2 + I2 Ta<5li4 p93nb5 

TaS2 +12 p209nb4 

T aS2 (M0S2 type) + Tals p210nb4 

Unknown grey fibers! + TaS2 +12 p21nb5 
TaS2 + weak lines (unknown "A") p79nb5 

TaS2 (M0S2 type) +12 + unknown (not "A") p95nb5 

Ta4SIii + trace TaJi/Tals + unknown "A" p73nb5 

o-TasSI? + Ta4SIn + TaeliVTals + 
unknown "A" p70nb7 
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Ta7S2li9 

1. 470 - 430°C, 17d Ta + Ta4SIn + Taji4/Tal5 + unknown "A" plOlnM 

2. 400°C, 13.5d o-TasSIv + TaJu / Tals pl91nb4 

BROMIDES 

Ta-Te-Br: 

TasTeBr? 

Reaction / annealing Products identified by Guinier powder notebook &. 
temperature diffraction page # 

1. 450°C, 8d Ta + TaTe2 + Ta3TeBr7 + TaBr5 p24nb4 
450°C, 21d TasTeBrv + TaBrj p73nb4 

2. 550°C, 12.5d TasTeBry + Ta^Brij + Ta6Bri4 + TaBrs p84nb4 

3. 500°C, 20d TasTeBr? xtals (major) + TaOBr2 pl94nb4 

Combined prod, from 2 «& 3: 
550 - 450°C, good transport, large crystal mass p23nb8 

4. 500°C, 18d TasTeBry + Ta p60nb4 
505 - 495°C, 6 wks Starting powder, little TaBrs p203nb4 
515 - 500°C, lOd Unchanged powder. No crystal transport p222nb4 
530 - 500°C, 14d Rough TasTeBry crystals, TaOBr2 p256nb4 
575 - 500°C, 14d No crystals p63nb6 
575 - 550°C, 14d Transport of many XRD candidates p63nb6 

5. 550 - 450°C, 14d Ta + TasTeBr? + TaeBru + Ta6Bri4 p87nb4 
545 - 505°C, 3d TasTeBr? + TaOBr: + weak lines p25nb5 

550 - 425°C, 21d Good TasTeBr? xtal transport pl7nb6 
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Ta-Se-Br: 

TasSeBry 

Reaction / annealing Products identified by Guinier powder notebook & 
temperature diffraction page # 

1. 450°C, 8d Ta + TaSe2 (?) + TaBrj p31nb4 
450°C, 2Id Ta + polycrystalline TasSeBr? + TaBrs p74nb4 
550-425°C,21d Good transport. TasSeBr? XRD xtals. pl7nb6 
575 - 500°C, 2 wks Transport of intergrown TasSeBr? p63nb6 
575 - 550°C, 30d TasSeBr? xtals + Ta^Bns + TaBrs pl3nb7 

2. 500°C, 15.5d Ta + TasSeBr? + ? p288nb3 

3. 500°C, 18d TasSeBr? xtals (CR260) + Ta + TaBr5 + p61nb4 

4. 500°C,20d TasSeBr? + Ta^Bris pl95nb4 

5. 550°C, 12.5d TasSeBr? + Ta^ris p83nb4 
505 - 495°C, 6wks TasSeBr? + TaBrs + Ta^Bru p202nb4 
515 -500°C, 14d No crystal transport p222nb4 
530 - 500°C, 14d TasSeBr? xtals + TaOBr2 + TaBrj p202nb4 

6. 550 - 450°C, 14d Ta + TasSeBr? + Ta«Bris + TaBrs p86nb4 
545 - 505°C, 3d Starting powder + TaOBr2 + TaBrs p27nb5 

Ta-S-Br: 

TasSBr? 

Reaction / annealing Products identified by Guinier powder notebook & 
temperature diffraction page# 

1. 450''C, 8d Ta + TasSBr? + TaBrs + unknown p30nb4 
450°C, 20d Ta + TasSBr? + Ta«Bris + TaBrs p75nb4 
550-425°C.21d Rounded TasSBr? pieces + crystals. pl9nb6 
575 - 500°C, 14d Excellent TaaSBr? crystals p63nb6 
575 - 550°C, 4wks TasSBr? crystals + TaBrs + Ta^Bru pl3nb7 

2. 500°C, 18d TasSBr? + Ta^Bris + Ta + TaBrs p62nb4 
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3. 550°C, 12.5d TaaSBfT + Ta^Bris + TaBrs p82nb4 
505 - 495°C, 6wlcs l" TasSBfT crystals + Ta^Bru + TaBrs p201nb4 

4. 550 - 450°C, 14d TasSBr? + Ta^Bru + Ta^Brn + TaBrs + Ta p85nb4 
505 - 495°C, 37d unopened p29nb5 

CHLORIDES 

Ta-Te-Cl: 

Ta3TeCl7 

Reaction / annealing Products identified by Guinier powder notebook & 
temperature diffraction page # 

1. 300°C, 4wks Ta + TaTe4 + TaaTeCl? + TaCls pl29nb2 

2. 450°C, 16d weak TasTeCl? + TaTe2 + TaCls + Ta p234nb3 

3. 500°C, 18d TasTeCl? (best xtal) + TaTe2 + Ta + TaCU p58nb4 

4. 550°C, 12.5d (tube cracked) TasTeCl? + TazOj + Ta + Ta^Clis p76nb4 

5. 550 - 450°C, lOd mostly TasTeCl? + Ta + white solid p97nb4 

6. 500°C, 15.5d TasTeCl? + Ta^Clu p286nb3 
SOO-'C, 39d TaTej + TaeClu + unknown! pl21nb4 

7. 500°C, 3wks. TasTeCl? pl27nb6 
550 - 450°C, 3d Bad. Domes of rounded flakes. p21nb8 

Ta-Se-Cl: 

TasSeCly 

Reaction / annealing Products identified by Guinier powder notebook & 
temperature difBraction page# 

1. 500°C, 15.5d TasSeCl? + Ta + Ta^CIis + TaCls (small) p287nb3 
500°C, 39d Ta<sCli5 + unknown pl22nb4 

2. 500°C, Ta, thin grey film, brown solid p39nb4 
3. SOOT, 18d TaSej + Ta + TaClj + little TasSeCl? p58nb4 
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4. 550 - 450°C, lOd 
515 -500 °C, lOd 
530 - 500°C, 14d 
550 - 425X, 21d 
575 - 500°C, 30d 
575 - 550°C, 14d 

5. 550°C, 12.5d 

TasSeCI? + Ta + TaCls p98nb4 
No transport p222nb4 
No transport p256nb4 
Thin grey film transported + starting powder pl9nb6 
Thin grey film transported + starting powder p 19nb6 
Tiny crystals transported + starting powder p 19nb6 

Ta + TaaSeCl? + Ta^Clu + TaCls p77nb4 

lasSClT 

Reaction / annealing 
temperature 

Products identified by Guinier powder notebook & 
diffraction page # 

1. 475°C, 25 d Ta, yellow solid, grey film (transported) 
700''C, 7 d; 475°C, 2 wks loaded. 

2. 500°C 
500°C, current 

3. 500°C,ISd 

4. 550 - 450°C, lOd 

5. 550°C, 12.5d 
500°C, 39d 

Ta, yellow-orange solid, grey thin film 

pl25nb6 
p9nb8 

p39nb4 

TaS2 + Ta + yellow-orange air-sensitive solid p57nb4 

Ta<Cli5 + TaS2 + Ta + TaCls p99nb4 

Ta + TaCls + TasSCl? / TaSa (? - unclear) p78nb4 
Ta<Clis + unknown pl23nb4 
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APPENDIX B. ADDITIONAL DISCOVERIES 

The purpose of this Appendix is to relate information about some very interesting 

compounds inadvertently discovered during the course of the diverse investigations of the 

Ta-Q-X and related systems (mixed-metal, quatemaiy), that formed the subject of this 

thesis. These compounds are not included in the main part of the thesis because their 

synthesis is not always reproducible, and/or because characterization is not complete due 

to difBcuIties in making enough of the pure material. However, discussing such enticing 

gems provides a glimpse into the possibilities of the relatively unexplored Ta-Q-X system, 

and a starting point for possible future research. 

I. Ta6Te4.xIi(HxZ. (x unknown, Z probably oxygen). 

Initial discovery; from "TasTel?" reactions using tantalum foil treated with 

HF/HNO3 before use. A few rectangular bar crystals formed in the tube, visually quite 

different from the abundant hexagonal or trigonal Ac-TasTel? and A-TasTel? crystals. 

Guinier powder diffraction showed a very unusual, highly distinctive pattern, reproduced 

below from a single crystal solution (Figure Bl). 

H I rl.„[t I  I I  i Il,I tiriiil-iilili nihil .tjj .11 jlL i jLi.ij. .i.111 ML fill I f ^1 iii'i * 
1 1 1  i  I  1 1 1 1 1 1 1 1 1  [  I  1 1 1 1 1 1  1 1 1  1 1 1 1  1 1 1 1 1 1  I  i  I  1 1 1 1  1 1  1 1  1 1  I  1 1  1  

1 0 .  2 0 .  3 0 .  4 0  .  5 0 .  60  .  7 0 .  80. 

26 (degrees) 

Figure B-1. The Guinier diffraction pattern of "Ta^Te4.xllo+xO". 
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Acceptable single crystals of this phase were selected, and its structure solved from 

intensity data collected on the Siemens P4. A summary of important crystallographic 

information is given in Table B1. 

Table B-1. Available crystallographic information for "TaeTe4.xl lo^O" 

Space group C2/m 
Unit cell dimensions (A, °) 

a 16.831(3) 
b 12.244(2) 
c 7.640(2) 
P 108.31(3) 

Volume 1494.7(5) 
Z 2 

Data (20m« = 50°) 1384 total, 1184 observed (> 2a) 
Ria 0.0253 
R1 / wR2 (observed) 0.0358 / 0.0834 
GoF 1.079 
Fourier map 2.21 and -1.95 e'/ 

Atomic positions and isotropic thermal parameters 

Atom X y z Ubo 

Tal 0.0 0.18087(6) 0.5 0.0163(2) 
Ta2 0.08190(3) 0.38001(5) 0.62626(7) 0.0167(2) 
11 0.03824(9) 0.0 0.2981 (2) 0.0236(3) 
12 0.13725(9) 0.5 0.9653 (2) 0.0291(4) 
D 0.16602(7) 0.18227(8) 0.7556 (2) 0.0320(3) 
14 0.22024(9) 0.5 0.5780 (3) 0.0349(3) 
Te -0.05444(6) 0.30416(8) 0.7371 (1) 0.0224(3) 

"0" 0.0 0.5 0.5 0.032 (5) 
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Structure: The structure of this phase consists of centered, planar Tae clusters, linked 

together to form one-dimensional chains by four bridging atoms. These chains run parallel 

to the crystallographic b axis. The Ta^ clusters can be viewed as two trinuclear clusters 

joined together by two Ta-Ta bonds linking two vertices of each trinuclear cluster 

fragment. The square formed by such a linkage is apparently centered by a smaU atom. 

Each trinuclear cluster fragment is bicapped (above and below) by an atom, and 

coordinated by eight other anions. Each metal atom is eight-coordinate, and has a similar 

coordination environment as the tantalum atoms in TasQXTi distorted octahedral 

coordination by the anions with one face of the octahedron opened to accomodate two 

metal-metal bonds. Two structural views are shown below (Figures B2 and B3), with 

bond lengths and angles. 

Figure B-2. View of the packing of the one-dimensional chains running parallel to the 
b axis. 
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Tal 

Tal 

Bond Distances (A) and Angles (°) 

Tal-Ta2 2.818(1) Ta2-Tal-Ta2 60.17(3) 
Ta2-Ta2 2.825(2) (triangle) Tal-Ta2-Ta2 59.92(2) 
Ta2-Ta2 2.9380) (square) Ta2-Ta2-Ta2 90.0 
Tal-Te 2.728(1) Ta2-0-Ta2 87.75(4) (tri) 
Tal-Il 2.884(1) Ta2-0-Ta2 92.25(4) (sq) 
Tal-I3 2.862(1) Tal-Te-Ta2 60.97(3) 
Ta2-Te 2.824(2) Ta2-Te-Ta2 59.83(4) 
Ta2-I2 2.867(1) Ta2-I2,4-Ta2 61.58(4) 
Ta2-I4 2.873(1) Tal-I3-Ta2 59.43(3) 
Ta2-"0" 2.038(1) Tal-Il-Tal 100.30(5) 

Figure B-3. The cluster unit, with bond distances and angles. The small dark grey 
atom, assigned as oxygen, sits on a crystallographic inversion center. The 
II atoms provide bridges to the Tal atoms in other clusters. 
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Problems: There are three major problems hindering full understanding of this phase: 

1. The tellurium / iodine problem; X-ray diffraction cannot distinguish between Te and I 

due to similar scattering factors. Both Te and I have been verified in the structure 

from x-ray photoelectron spectroscopy, but the distribution of the two is only 

speculative. Several synthetic attempts to solve this problem by systematically varying 

the Te /1 ratio over all possibilities failed (see 3., below). In the solution above, the 

tellurium atoms have been placed in role of the trinuclear cluster capping atom, by 

analogy to TasTeX?, and because iodine has never been observed in this role. 

2. The nature of the small atom in the center of the square of Ta atoms caused by the 

"joining" of the two Tas units. The bond distance from this site to the four 

surrounding tantalum atoms is 2.0380(7) A. This is a reasonable length for an element 

in the first or second period only: H through F. The XPS experiment did not detect 

any elements other than C and 0, which unfortunately are always present in samples. 

The detection of these elements, then, could be real or simply the usual adventitious 

presence of C and 0. Another, more insidious possibility, is that the electron density 

building up on this site is a crystallographic artefact, and is not due to a real atom. 

This site is a special position (0,0,0) and is located at the center of four heavy tantalum 

atoms. However, if this atom is removed, a peak of near 10 e7A^ registers in the 

Fourier map. This is rather large, and indicates a valid scattering source. 

3. Non-reproducible synthesis. This compound has only been found as a very minor side 

product in certain TasTel? and Ta2NbTel7 tubes. Numerous attempts to make the 

compound in larger yield have all failed. These attempts were carried out by 

systematically varying the Te /1 ratio, that is, varying the x in "Ta<5Te4.xIio+xO" from 4 

to -10 (TaJuO to Ta^TeuO), and heating at 450°C for two weeks. Also, all 

reasonable small atoms were tried: H (TaH source), B, C, N (TaN source), O (TaaOs 

source), F (CaF2 source). Although these various reactions did lead to the discovery 

of some new compounds (below), the target phase never formed. 
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Interestingly, the one "clue" to this compound is that it only formed when one 

particular batch of Ta metal was used: Ta foil, 0.127 mm thick, which was washed with 

an HF / HNO3 solution and dried in air in a drying oven (120°C) before use. When Ta 

metal pre-treated with the proper HF/HNO3/H2SO4 cleaning solution is used, no 

compound formation was observed. The reason for this is unknown. 

n. tatcxis-x 1). 

One of the many systematic reactions designed to grow the Ta«Te4.xIio+xO cluster 

phase discussed above was "Ta^TeelgO", which resulted in the discovery of another new 

tantalum chalcogenide halide compound. Reaction between Ta foil, Ta205, Te and I2 

according to Equation (1), 

28 Ta (foil) + TajOj + 30 Te + 20 I2 = 5 "Ta^TeJgO" (1) 

at 430°C for ca. two weeks in evacuated pyrex tubes >'ielded brittle, reflective black solid 

chunks with distinct hexagonal facets. This was a minor phase (visual estimate 3-5% total 

product), the majority products being TasTel;, TaTe2, TaOl2, TaJu and Tals. X-ray 

photoelectron spectroscopy verified the presence of Ta, Te and I in two independent 

samples, and gave a composition of "TaTeo.87I2.17" The Guinier powder pattern of the 

black solid was simple, sharp, and could be matched exactly to the Zrls-type structure. 

This structure has generated controversy over the years, initially being solved in the 

hexagonal system, but later assigned to primitive orthorhombic symmetry on the basis of a 

few extremely weak reflections.^®^' Crystals of "TaTe^W were obtained by chipping 

small pieces fi^om the larger chunks that formed in the reaction tubes, using a scalpel. 

Data sets were collected on both the Siemens P4 and on an AFC6R diffractometer 

equipped with a rotating anode. On both diffractometers, a primitive hexagonal cell was 

easily indexed using several of the narrow, intense peaks. There was no indication of a 

different cell on either diffractometer, fi-om axial photographs or fi-om any of the search 
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routines available. However, this is reminiscent of the problems with Zrh, where the 

orthorhombic cell was chosen based on weak spots appearing in a Weissenberg 

photograph exposed for 40 hours; the cell could not be found even on a rotating anode 

diffi^ctometer using a large crystal. With these previous Zrls work in mind, intensity data 

sets of TaTexIs-x were also collected after manually transforming to the corresponding 

orthorhombic ceU: a = 12.180(2) A, 6 = 6.480(1) A, c = 7.028(1) A. 
Based on the powder patterns and on the single crystal solution, TaTexIs-x is 

grossly isostructural with Zrh. Briefly, this structure is built up of one-dimension chains 

of face-sharing Ta(Te/I)6/2 octahedra running parallel to the hexagonal c-axis. Within the 

chains, the metal atoms alternate short and long distances, due to Ta-Ta dimer formation. 

Structural views are shown in Figure B-4. Crystallographic information is in Table B-2. 

(a) [001] view (b) view of the Ta-Ta dimers 
within the TaTCxIa-x chains 

Figure B-5. Structural views of TaTexIs-x. Black circles, Ta; Open circles, Te/I. 
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Table B-2. Available crystallographic information for "TaTexW 

Atom 

Space group 
Unit cell dimensions (A) 

Volume (A^) 
Z 

Data (20„^ = 55°) 
rist 
Rl/wR2 (all) 
GoF 
Fourier map 

p63/mcm 

7.029(1) 
6.479(1) 
277.22(7) 
2 

676 total, 134 unique 
0.0588 
0.0304/0.0565 
1.234 
1.103 and-1.250 e7A^ 

Atom 

Ta 
Te/I 

Atomic positions and isotropic thermal parameters 

X y z 

0.0 
0.0 

0.0 
0.3228(1) 

0.0396(2) 
0.25 

Un 

Anisotropic displacement parameters 

U22 U33 U23 U13 

Ta 0.0200(4) 0.0200(4) 0.0185(13) 0.0 0.0 
Te/I 0.0319(6) 0.0212(4) 0.0188(5) 0.0 0.0 

Uuo 

0.0195(5) 
0.0227(4) 

U12 

0.0100(2) 
0.0159(3) 

The best solution was obtained in the space group P63/mcm (see Table B-2). This 

high symmetry space a mirror plane at r = 0. The metal atoms therefore are constrained to 

the centers of their octahedral holes (i.e. 0,0,0), resulting in a uniform Ta-Ta distance. 

Refining the structure this way results in large U33 thermal displacement fartors for the Ta 

atoms and high R-factors, both of which indicate the true structure involves dimerization. 

This problem was circumvented and the pairing of the metals was included by refining the 

metal positions as half-occupied split positions. The Ta z-coordmate is slightly off-center 

of (0,0,0), a position which generates an extra Ta-Ta dimer in the space where the long 
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Ta-Ta length should be in the correct structure. The structure was solved by allowing 

both the tantalum r-coordinate and the site occupation factor to vary. This approach led 

to an exactly half-occupied Ta position, with r = 0.0399. The resulting bond distances 

(d(Ta-Ta) = 2.725(2), 3.242(2) A) are very reasonable for a strongly bound Ta-Ta dimer. 

Of course, the Te/I content cannot be resolved from the x-ray diffraction experiment, but 

based on the XPS data, the anion matrix is presumably roughly 2:11:Te. 

Attempts were made to solve the structure in the reported orthorhombic setting, 

after manual transformation of the hexagonal cell. A complete sphere of data were 

collected (triclinic symmetry, no restrictions), and the solution was attempted using the 

Zrls orthorhombic cell shape and atomic positions. The results were puzzling: The data 

(which could be solved to Rl/wR2 = 0.0277/0.0557 in Pds/mcm), would not solve 

acceptably in the orthorhombic system, even though Ta-Ta and Ta-I bond distances were 

very close to those obtained from the hexagonal solutions. Also, attempts to synthesize 

this phase from the elements by loading stoichiometric "TaTel2" yielded only binaries and 

TasTel? compounds. 

m. "TaJis" 

Under the pretense that the small atom in the center of the Tae cluster might be 

fluorine (HF is used to clean the metal before use), reactions using CaFj were carried out. 

(No TaFj was available at the time.) The reaction described by Equation (2) was carried 

0.5 CaFz + 3 Ta (foU) + Te + 7.5 I2 = Cao.sTasTelTp (2) 

out at 450°C for two weeks in an evacuated pyrex tube. The majority of the product was 

identifiable material {Hc-IslzIqIi, TaJu, CaF2), but a few small reflective black well-

faceted crystals formed, transported to the opposite end of the tube. An insufiBcient 

amount of the material formed for any characterization methods besides SEM and x-ray 

dififraction. The Guinier pattern was similar to that of TaJu, but with each TaJis line split 

into three. SEM showed strong Ta and I; no other elements (e.g. Ca) were 

unambiguously detected. A few crystals of the material were chipped from the larger 
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brittle chunks, and intensity data were collected. A summary of important crystallographic 

information is listed in Table B-3. 

Structure: This compound apparently contains discrete TaJu clusters based 

on the [Taj 12] unit, with an additional sbc "terminal" iodides at the metal vertex positions. 

TThe hexanuclear metal core is not octahedral, but flattened slightly in the crystallographic 

c-direction. These cluster units pack as shown in Figure B-4. An expanded view of the 

TaJis cluster is shown in Figure B-5, with bond distances. All Ta-Ta and Ta-I bond 

distances are all reasonable, in fact very similar to those in TaJu and Taelu. 

Table B-3. Available crystallographic information for "Ta^I ig" 

Space group 

Unit cell dimensions (A) 
a 
c 

Volume (A^) 
Z 

Data (20nu* = 50°) 

^int 
Rl/wR2 (all) 
GoF 
Fourier map 

R3 

17,011(2) 
9.615(2) 
2409.6(6) 
3 

1263 total, 922 unique 
0.0544 
0.0609 / 0.0886 
1.328 
2.188 and-1.832 e7A^ 

Atomic positions and isotropic thermal parameters 

Atom X y z UiK, 

Ta 0.23159(5) 0.68020(5) 0.03177(8) 0.0139(3) 
11 0.01603(8) 0.13827(8) 0.1732(1) 0.0179(3) 
12 0.07393(8) 0.56484(8) 0.1699(1) 0.0184(3) 
13 0.26360(9) 0.23516(9) 0.1858 (1) 0.0244(4) 
Ql' 1/3 2/3 1/6 
Q2' 0.1112(14) 0.6977(14) 0.3118(24) 

' Small peaks corresponding to these atomic positions appear in the Fourier map. If 
assigned to calcium, both refine to site occupation factors of - 0.2 Ca. 
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Figure B-4. Two views of the packing of the "TaJig" clusters, (a) View down [001], 
with the "terminal" atoms (13) in grey, (b) Another view of the packing. 
Ta<s clusters are shaded. 
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c 
Ta-Il 
Ta-I2 
Ta-I3 

Ta-Ta 3.190(1) ([001]) 
Ta-Ta 3.216(1) (ab plane) 

Bond distances in the TaJjg clusters (A) 

2.769(2), 2.773(2) 
2.758(1) 
2.960(2) 

Figure B-5. Expanded view of a Ta^Iis cluster. 

In addition to the well-defined TaJig clusters, two additional peaks arise in the 

Fourier map, as shown in Table B-3. The first (Ql: 1/3, 2/3, 1/6), centers the Ta^ cluster 

(d(Ta-Ql) = 2.2648(8) A), and the second (Q2: 0.1112, 0.6977, 0.3118), is stuffed in 

between the TaJig clusters, d(Q2-I) = 2.44(2) - 3.39(2) A, d(Q2-Ta) = 3.53(2) A. These 

peaks are small, and if assigned to a calcium atom, both refine as ~20% occupied, giving 

"Cai.23Ta6li8". However, the identity (or even the veracity) of these peaks is uncertain. 

A more serious problem with this phase is that of reproducibility. The few crystals 

obtained came fi-om the first "Cao.5Ta3Tel7F' reaction attempted. Subsequent attempts to 

repeat the same experiment did not produce any of the compound, though the same 

reagents and synthetic conditions were used. Additionally, several other reactions 

involving Ca, and/or CaF2 were done (CaTaJig, CaTasTel?, CaTa3Tel7F2, CaTa«Te4lioF2), 

all without success. 
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APPENDIX C: 

OTHER MIXING STUDIES AND QUATERNARY AND 

INTERCALATION CHEMISTRY 

Introduction 

Along with the tantalum-niobium mixing studies discussed in Chapter Five, several 

other mixing studies were undertaken to explore the substitutional possibilities of the 

M3QX7 system. The studies discussed in this appendix are categorized as follows: 

I. Chalcogen mixing. Simple substitution of one chalcogen for another, presumably at 

the capping site. This is particularly interesting is the case of sulfijr, where the 

substitution of sulfur into an easily formed compound like //c-TasTel? could present 

another example of the stabilization of sulfur into a hexagonal TasQX? phase (hc-

TasSI? does not form readily, viz. Chapter Two). For all chalcogen mixing studies 

discussed below, the iodide system was chosen due to the readiness with which the 

ternary iodides formed single crystals, leading to ease of characterization of the 

materials. Additionally, equimolar chalcogen ratios were chosen in all cases, i.e., all 

studies were carried out on "Ta3Q%.5Q^o.5l7" systems. 

n. Halogen mixing. A mixed-halogen matrix is especially interesting with a view toward 

the theoretical site-preference studies within the 3-1-7 framework discussed in Chapter 

One. The question to be addressed here is whether the halogens will sort themselves 

onto the various crystallographic sites by electronegativity, as the chalcogen 

apparently does. Two tantalum systems were chosen for study, TasTelsCLj and 

Ta3Sel3Br4. In these compounds, usmg the various Mulliken populations calculated 

for NbsClg (Chapter One), the chalcogen should still occupy the cluster capping site. 

The halides, if the trend holds, should segregate (order) with the less electronegative 
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iodine occupying the least electron-rich site, the jis" three-cluster bridging site. The 

second halide should occupy the remaining two crystallographic sites. 

m. Other mixed-metal halides and chalcogenide halides. The understanding of the 

electronic structure of the NbsXg and M3QX7 systems suggests the possibility of 

incorporating a metal from another group of the periodic table into the trinuclear 

cluster. Especially considering the ease with which niobium was substituted into the 

various tantalum phases, substitution of a similar metal (Hf, Zr, Mo, eg.) is reasonable, 

and oflfers a tuning of the electron count at the cluster. 

I. Chalcogen Mixing 

ta3sextei.xl7 {x = 0.5) 

Synthesis and Characterization 

Smooth substitution of selenium and tellurium onto the cluster capping site was 

verified by the synthesis of TasSe^tTei.*!?, with x » 0.5 in high yield, using the same 

conditions that form the ternary selenide and telluride iodides. 

The mixed selenide-telluride compound "Ta3Seo.5Teo.jI7" can be made readily by 

stoichiometric combination of the elements in the same temperature range as the 

corresponding ternaries TasSel? and TasTel?, i.e., 450 to 550°C. Reaction times are also 

the same - one to two weeks, with quantitative conversion achieved in two to three weeks. 

The compound grows long hexagonal prism crystals, more similar to the morphology of 

Ac-TasTel? than to /jc-TasSel?. Abundant single crystals can be grown by reaction of the 

elements, or by reheating premade powders, in a temperature gradient of 545-505°C, for 

several days. The Guinier x-ray powder diffraction pattern of "Ta3Seo.jTeo.iI7" showed 

the mixed compound to be isostructural with the two ternary endmembers (x = 0 and x = 

1). Lattice constants and the exact chalcogen content were determined using single crystal 
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x-ray diffi-action, on several crystals from a 545-505°C re-heating step. The single crystal 

data also confirmed the isostructurality of the mixed phase with TasSel? and TasTel?. All 

data sets were collected in an identical manner, which information is given in Table C-1. 

Results of the solutions are also shown in Table C-1. In all cases, the refinement yielded 

Te.Se ratio near 0.6 ; 0.4, slightly tellurium-rich. The lattice constants reflect the expected 

trend due to the different sizes of the two chalcogens, with the mixed compound having 

lattice constants midway between the pure ternaries. The mixed position was refined as a 

single site, and not as a split position consisting of selenium and tellurium at different 

distances fi-om the Taa cluster. The Ta-Q bond lengths therefore represent an average 

bond length, comprised of ca. 40% Ta-Se and 60% Ta-Te contributions. In all cases the 

Ta-Q length was determined to be 2.652(4) A, again midway between the Ta-Se length in 

TajSel? (2.528(7) A) and /jc-TasTel? (2.710(4) A). 

Table C-1. Crystallographic summary for Ta3Seo.38Teo.62I7 (representative solution). 

Space group 
Unit cell dimensions (A) 

a 7.569(1) 
13.770(3) 
683.19(9) 
2 

p63mc 

c 
Volume (A^) 
Z 

Fourier map 

Data (20„„:c=5O°) 
Rint 

R1 / wR2 (all data) 
GoF 

1222 total, 284 unique 
0.0602 
0.0340/0.0611 
1.167 
1.70 and-1.78 e'/A^ 

Results 
Composition 

(average of four solutions) Ta3Seoj8Teo.62l7 
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TasSxTei-xI? (x  = 0.5) and TasSxSci-xI? (x  =  0.5) 

Synthesis and Characterization 

Partial substitution of sul&r onto the capping site is perhaps more appealing than 

the Se-Te compound reported above. The possibility of incorporation of sulfur into the 

hexagonal phase is one reason; another is the incorporation of selenium and tellurium into 

the sulfide iodide compounds that have no counterpart in ternary Se or Te chemistry, i.e. 

Ta^SIn and o-TasSI?. 

The mixed sulfur-tellurium and sulflir-selenium compounds TasSxQi-xI? (Q = Se, 

Te) can be synthesized in high yield by stoichiometric combination of the elements from 

450 to 550°C, for a duration of a few days to quantitative conversion in ca. three weeks. 

Both compounds form glistening grey powders which grind in the mortar with a 

lubricating feel. Guinier powder diffiaction indicates adoption of the /ic-NbaSel? type, as 

the mixed Se/Te compound did. Unfortunately, no single crystals of either of these 

compounds were ever grown, despite attempting reactions at different temperatures, and 

also attempting to re-heat, or anneal, the premade powders under a variety of conditions. 

The Guinier powder diffraction patterns were thus the sole characterization method for 

these compounds. This method is suflBcient, though, to answer the question of whether 

the powders that form consist of one single mixed-chalcogen phase, or of a mixture of the 

ternary compounds. The lattice parameters of the two ternary phases possible in each 

mixed-chalcogen system are similar of course, but are sufficiently different to permit the 

distinguishing of phases. Using TajSexTei-xI? as an example, the intense 203 and 205 lines 

of /jc-TasSel? and /jc-TasTel? are separated by ca. 0.5° in 2-theta, more than enough to 

distinguish these two phases using these two lines. The situation is analogous for 

Ac-TasSI? compared to Ac-TasSel? and hc-TasTeh. Therefore, a powder pattern 

containing two closely spaced sets of lines will indicate the coexistence of two phases. 
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The Guinier diffiaction patterns of both the "TasS^Sei-xI?" and "TasSxTei-xI?" 

powders indicate the presence of only one phase, presumably a mixed chalcogen phase, 

based on the evidence that only one diffraction pattern appears. No splitting of lines was 

observed. Furthermore, the patterns of the sulfur-doped systems showed the expected 

shifts relative to the known ternary selenide and telluride patterns, indicating mbdng. In 

both cases, the lines in the sulflir-doped patterns were shifted toward larger 20 values 

(smaller ^/-spacings) relative to the pure /jc-TajSel? and //c-TasTel? patterns. This is the 

expected result when the unit cell of a system has been reduced in size due to 

incorporation of a smaller element. 

n. Halogen Mixing 

TasTelsCU and Ta3Sel3Br4 

Synthesis and Characterization 

Synthesis of the mixed halide compounds TasTelsCU and Ta3Sel3Br4 was carried 

out according to Equations (1) and (2), respectively: 

11 Ta (foU) + 4 TaCl5 + 5 Te + 7.5 I2 = 5 TajTelsCL, (1) 

3 Ta (foil) + Se + 1.512 + 4Br2 = Ta3Sel3Br4 (2) 

Reagents were loaded into flame-dried quartz tubes in a glove box, and sealed 

under vacuum. The temperature chosen was 500°C, and the reactions were allowed to 

proceed for two weeks. At the end of this time, each tube contained two distinct 

products: a black powder, and a reflective silver solid, which was transported to the 

opposite end of the tube. This solid has a distinct layered "micaceous" morphology, and 

ground with a lubricating feel in the mortar. Guinier powder patterns of the transported 

crystalline solid resembled 3-1-7 compounds, especially NbsSBr?. SEM verified the 

presence of all four elements in each case. However, the solid forms as large pieces, and 

no suitable crystals of either phase could ever be removed. Solution of the structures via 

x-ray powder diffraction was not attempted. 
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in. Other 

MTajIg (M = Zr,Hf) 

A hypothetical compound MTa2lg with M = four-valence-electron Zr or Hf would 

have six metal-metal bonding electrons per cluster, as with TasQX?. All attempts to 

synthesize these enticing compounds were carried out by reactions of the elements at 450° 

to 550°C, in evacuated glass tubes. For all "hetero-metal" reactions, the result was the 

same: Zr or Hf was not incorporated into a Ta-I compound. The ultimate fate of group 

rV metals were the brightly colored tetraiodides, ZrLj and HfLj. The Ta-I in the tube 

formed predominantly TaJu, tantalum metal, and some Tals. 

ta2motel7, ta2mote3l5 

Molybdenum likewise could not be induced into the TasQXT framework. 

Reactions of the elements in the usual temperature range according to the above formulae 

led to formation of M0I2, MoTe2, and known tantalum iodide and telluride iodide 

products. 

Intercalation of TasQXy 

Intercalation of tantalum compounds 

Previous studies intercalating TaS2 v/ith sodium, ammonia and even large 

organometallic moieties have been well-documented.^'*'^ The layered nature of TasQX? 

raises the possibility of intercalation chemistry. Fundamental structural chemistry has been 

discussed at length in this thesis akeady: Important to be reminded of here is the 

energetically "accessible" and slightly Ta-Ta bonding MO (Figure 1-19 and attendant 

discussion in Chapter One) present in TasQX? that might be able to accept electrons from 

the intercalate without structural decomposition. 

Intercalation of binary layered halide compounds of the CdCl2 or Cdl2 types has 

never been observed; stirring the layered compounds in solution with the intercalate 
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candidate leads rather to dissolution of the host, driven by solvation to form a metal 

coordination complex. For example, the formation of CdCNHs)^^'' is observed instead of 

NH3 intercalation during studies of CdCl2. The reason for this is the lack of stabilizing 

metal-metal interactions within the layered framework, and the lesser lattice energy 

compared with the non metal-metal bonded Group V dichalcogenides that do exhibit 

intercalation chemistry, (greater ionic charges = greater lattice energy). 

Intercalation chemistry has, however, been observed in layered halides that do 

have extensive stabilizing metal-metal bonding. Corbett, et al., have intercalated ZrX (X = 

CI, Br), layered compounds containing double metal layers sandwiched by halide. These 

phases could handle up to one mole of hydrogen (ZrXHi.o) without undergoing structural 

decomposition.^®®' The strongly bound metal double-layer network apparently increases 

the lattice energy of the compound and prevents solvation of the metal ions. 

In 1991, Simon, et al, succeeded in intercalating a-NbsClg with sodium to give 

NaxNbsClg by reacting NbsClg with a solution of sodium benzophenone in 

tetrahydrofuran.'®'' The overall structure of NbsClg underwent a change in anion stacking 

pattern from hep to ccp, and the Nb-Nb bond length decreased slightly, consistent with 

population of an M-M bonding orbital (see Chapter One). Also, the compound changed 

color from green to red upon intercalation.''*"' 

With a view towards studying the reactivity and chemical properties of TasQX?, 

the intercalation of NbsClg is an encouraging precedent. This is particularly true for 

TasTeCI?, which adopts the NbsClg structure type and can be made readily in pure form. 

Synthetic approaches to intercalation of Ta^QXf. 

A. High-temperature solid-state reactions between pure ternary TasQX? 

compounds and the chosen intercalates. See also end of this appendbc, 

"Quaternary reactions" for quaternary synthetic attempts. 

B. (NaK)x(benzophenone) + TasTeCl?: Direct analogy to NaxNbsClg. 

C. Refluxing the powdered TasQX? compounds in an organic solvent, at room 

and elevated temperatures. 
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A. High-temperature solid-state reactions. 

Several reactions of various TaaQX? "hosts" with various proposed intercalate 

species with were attempted. In general, reactions were carried out using standard 

evacuated glass tube method, at a variety of temperatures. Occasionally a Ta or AI2O3 

crucible was used to guard against reactions of extremely active alkali metals or alkaline 

earths with the glass container (at least for the initial reaction, until the active metal was 

completely consumed). As well as investigating the potential intercalation chemistry of 

these phases, the following reactions also constituted an attempt to prepare quaternary 

derivatives of TasQXy compounds. A reference to the page number in the lab notebook is 

given (pl59nb4 = page 159 in notebook four). 

I. Hydrogen, Alkali metals 

Hydrogen 

• h2 + tastecl? 
Conditions: Flow system: ultra pure carrier grade H2 (>99.999%) used. TheTasTeCl? 
was XRPD pure, and finely powdered. Placed at bottom of a self-made reaction vessel, 
inserted into a tube furnace for heating. 

Reactions: 
1. 200°C, 4h No change. Unaffected TasTeCl? (XRPD) 

400°C, 6h Te (s) sublimed to cooler part of reaction vessel. XRPD 
shows TasTeCl? left, as well as Ta205. Oxygen source 
unknown. Gas/Si grease/glass? 

500°C, several hours Stronger Ta205, weaker TasTeCl?. 

Sodium 

• TasTeCl? + Na (pl59nb4, p223nb4, p57nb5, p3 lnb7) 
Reactions: 
1. 105°C, Ih / 475°C, 3h Unreacted Na + TasTeCl? + NaCl + bright green 

powder. Distinctive powder pattern. 
SOO^C, 3 wks NaCl + bright green solid + unknown crystals, 

hexagonal vertices. Unsuccessful XRD 
480 - 460°C, 5 wks Same unknown crystals, bright green powder. NaCl 
925°C, Id / 750°C, 21d TaTe2 + steel-wool texture grey fibers: low 26 line. 

(also seen in SrTasTeCl?, Li2Ta3TeCl7, etc., below) 
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• (NaK)2(benzophenone) + TasTeCl? (p75nb6, p49nb7) 
Conditions: Periodically refreshed purple (NaK)2(bzph) solution (in thf) decanted onto 
TasTeCl? powder, stirred @ room temp. Id. Solid product filtered, washed with thf till 
clear washings, dried in vacuo. Handled in glove box. 

Results: 

Annealing (500°C, 35d): 

Finely divided grey powder, unreacted silver alkali metal 
piece. 

SEM: K, Ta, Te CI present. No No. 
XRPD: Weak & broad diffraction lines. Unmatchable - not 
similar to TasTeCl?. 
Tube attack. Grey powder. Weak diffraction, 
unidentifiable. 

• Na + TasTel? 
Reactions: 
1. 105°C, lh/450°C, 12h 

SOOT, 3 wks 
480 - 460°C, 5 wks 
727°C, ld/575°C,21d 

(pl58nb4, p221nb4, p55nb5, p35nb7) 

TasTel? + Ta^I^ + Nal 
//c-TajTel? + Ta^lH + Nal 
TaJu + Nal only (?) - can't locate Te by XRPD 
Tals + Nal + TaOl2 + Ac-TasTel? + low 20 line. 

• 2Na + NbsTel? 
Reactions: 
1. 105°C, lh/475°C, 3h 

500°C, 3wks 
700°C, 6 wks 
925"^ ld/750°C,21d 

(pl57nb4, p224nb4, pl07nb5, p35nb7) 

nb3tel7 + nai 
NbsTel? + Nal + 2 unknown phases 
NbiTe4 (film on wall) + NbJu + Nal 
Nbalg + NbjTel? + Nbslj + Nb5Te4 + Nal + intense 
line at low 20. 

n. Alkali and Alkaline Earth Chalcogenides 

• NazS + TasSI? (p7nb5) 
Reactions: 
1. 500°C, 5d Nal / NazS + extremely hard solid, unknown 

• (NajS/O.S Sg) + Ta3Sl7 (p228nb4) 
Purpose: Dissolve TasSI? in a "reactive polychalcogenide flux" of Na2S5. 
Reactions: 
1. 400°C, 3.5d Nal / Na2S + two unknowns: Crystals and very hard 

solid. 
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• 5 Na2Se3 (flux) + TasSel? 
Reactions: 
1. 400°C,3.5d 

450°C, 30d 
480 - 460°C, 5 wks 
510°C, 30d 

(p226nb4, p4nb6, p53nb5, p27nb7) 

Nal + TaSea + Se + unknowns 
No XRPD, more TaSes ribbon, prob. Se 
Nal + TaScj 
Nal + TaSes 

in. Miscellaneous 

Tin 

• 11 Sn (flux) + A-TasTel? 
Reactions: 
1. 350°C, 2.5d; fiimace ofif Sn + SnI; 

625°C, 17d Sn + SnI; 
1000°C, 2d / slow cool 

to 700®C, fiimace off Sn + SnI: 

(p231nb4, p63nb5, p23nb7) 

Sn + Snl2 + SnTe + 2 unknowns + Ta20j 

Gallium 

• 6.6 Ga + Ac-TasTel? 
Reactions: 
1. 350°C, 2.5d; fiimace off 

450°C,2Id 
525°C, 16d 

510°C, 30d 

(p229nb4, p35nb5, pll5nb5, p29nb7) 

tastel? + c]ra2l4 
Ga2l4 + silver cotton-candy stuff + black powder 
Ga2l4 + silver threads^lack powder (= identical 
patterns) 
Silver fibers / grey powder. Still unknown! 

Silver 

• 6 Ag + TasTelv 
Reactions: 
1. 400°C, 3.5d 

450°C, 21d 
525°C, 16d 

(p230nb4, p33nb5, pl21nb5) 

no entry 
weak TaJu + strong unknown (Agl?) 
TaJn + hex-AgI (?) (same unknown as above) 
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Quaternary Systems: AxTasQXy 

The reactions tabulated below in outline form present a summary of the reactions 

designed to investigate the potential quaternary chemistry of the TasQX? system. Such a 

quaternary chemistry has been discovered in niobium chemistry where, as alluded to in 

Chapter One, Rb and Cs have been put into the Nb-S-Br system. The compounds 

RbsNbfiSBrn and CsNbsSBr?retain obvious structural similarities to the "parent" 

NbaSBr? structure, but each forms its own new and unique structure. Such phases might 

constitute encouragement enough to pursue the same chemistry for tantalum; also, 

considering the readiness with which Ta-Q-X systems yielded such diverse and abundant 

ternary compounds once the proper temperature region was found, it almost seems likely 

that incorporation of a fourth element into a Ta-Q-X system might occur. 

General: Reaction carried out using standard evacuated glass tube method. A 

reference to the page number in the lab notebook is given (pl80nb4 = page 180 in 

notebook four). 

I. Hydrogen, Alkali metals 

Hydrogen 

• HzTasTeCl? (pl80nb4, p49nb5) 
Equation: 4TaH + 2TaCl5 + TeCU + Te 
Reactions: 
1. 450°C,9d: TaOCl2, unknowns? 

480 - 460°C, 5 wks: Uncertain; Ta«Clij and TasTeCl? likely 

• H2Ta3Tel7 (p 178nb4, p51 nb5) 
Equation: Ta + 2TaH + Te + 7/212 
Reactions: 
1. 450°C, 9d: TaOl2 + unreacted Ta/TaH. Unidentified powder 

480 - 460°C, 5 wks: prob. Ac-TasTel?, A-TasTel?. 

• HTaaTel, (p57nb7) 
Equation: Ta + TaH + Te + 7/212 
Reactions: 
1. 435°C, lOd: Ta/TaH + hc-TasTel? + TaTe2-Iike pattern + Ta^Ii/Ials + 

unknown 
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Lithium 

• li2ta3tecl7 
with Li metal: 

Equation: lOLi + 8Ta + 5Te + 7TaClj = 5Li2Ta3TeCl7 (pl23nb5, p33nb7) 
Reactions: 
1. SOOT, 14d: Ta^Clis + TaTe2 

727°C, Id / 575°C, 21d Ta2Si/TaO (indistinguishable patterns) + TaTe2 + 
low 20 pattern (unknown). 

with LiCl: 
Equation: 2LiCl + 2Ta + Te + TaCl5 = Li2Ta3TeCl7 (pl25nb5, p33nb7) 
Reactions: 
1. 500°C, 14d Ta^Clis + TaTe2 + LiCl + low 20 pattern seen in 

Na+TasTeCl? reaction 
925°C, Id / 750°C, 21d: TaTe2 + low 20 pattern + Ta2Si 

• li2ta3tel7 
Equation: 2Li + 3Ta + Te + 7/212 (pl39nb5, p21nb7) 
Reactions: 
1. 425°C, 17d hc-l3iilQh + A-TasTel? + Lil + juak 

430°C, 17d A-Ta3Tel7 + TaTe2* + Lil-like pattern + little TaOl2. 
*TaTe2 lines shifted to lower 20 

Sodium 

• Na2Ta3Sl7 (pllnb7, p47nb7) 
Equation: Na2S + 3Ta + 7/2 I2 
Reactions: 
1. 425°C, 16d Ta4SIii + Ta«Ii4 + o-Ta3Sl7 + NaI/Na2S (same pattern) 

500°C, 35d Ta«Ii4 + Na2S/NaI + intense inknowns 

• Na2Ta3Se6l7 (pl29nb5, p27nb7) 
Equation: Na2Se5 + 3Ta + Se + 7/212 
Reactions: 
1. 500°C, 14d: NaI + TaSe2 

510X, 30d: NaI + TaSe2 + l2 

Potassium, Rubidium: 
• No reactions attempted. 
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Cesium 

• CsTssSIt (pl5nb7, pSlnb?) 
Equation: Csl + 3Ta + 1/8 Sg + 3 I2 
Reactions; 
1. 430°C, 20d Cs2Tal6 + Ta6li4/Talj + o-TasSI? 

500°C, 24d Cs2Tal6 + Ta<Ii4 + unknowns 

• Cs4Ta3Sl7 (p67nb7) 
Equation: 4CsI + 3Ta + 1/8 Sg + 3/2 I2 
Reactions: 
I. 435°C, lOd Ta metal + Csl + Cs2Tal6 

• CsTasSel? (pl5nb7, p53nb7) 
E q u a t i o n ;  C s l  +  3 T a  +  S e  +  3 l 2  
Reactions: 
1. 430''C, 20d TasSel? + Cs2Tal6 + prob. TaJn 

SOCC, 24d Cs2TaI<s + TaJu + "other intense lines" 

• CsTajTel? (pl7nb7, p53nb7) 
Equation; Csl + 3Ta + Te + 3 I2 
Reactions: 
1. 430°C, 20d 

500°C, 24d Cs2Tal6 + Ac-TasTel? + strong unknown 

n. Alkaline Earth Metals 

Be, Mg 

• No reactions attempted. 

Calcium 

• CaTasTel? (pl31nb5, p7nb7, p79nb7) 
Equation; Ca + 3Ta + Te + 7/212 
Reactions; 
1. 425°C, 17d Ac-TasTel? + A-TasTel? + TaJi4. No sign of Ca! 

430°C, 17d hc-1 asTel? + many unknown lines. 
500°C, 35d Ac-TasTel? + A-TasTel? + unknown powder. 
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Strontium 

• SrTasTeCl? (pl27nb5, p31nb7) 
Equation; SrCU + 2Ta + Te + TaClj 
Reactions; 
1. 500°C, Md; TaTe2 + Ta«Cl,j + SrCh 

925°C, Id / 750°C, 21d TaTej + SrCU + grey fiber weave - low 20 lines like 
nb3te4 

Barium 

• BaTasSI? (pl37nb5, p47nb7) 
Equation; BaS + 3Ta + 7/2 h 
Reactions; 
1. 425°C, 17d Ta metal, TaJu + mixture of //c-TaaSI?, o-TasSI?, TaiSIn 

(unsure - weak patterns) + weak, complicated 
unknown pattern. 

500°C, 35d Tafilu + TaOl2 + at least two unknowns 

m. Other 

Zinc 

• Zn + 3Ta + Te + 7/2 h 
Reactions: 
1. 450°C, lOd 

500°C, 3 wks 

625°C, 17d 
1000®C, 2d / slow cool 

to 700''C, furnace off 

(pl68nb4, p207nb4, p67nb5, p25nb7) 

A-TasTel? + grey unknown & white unknown. 
A-Ta3Tel7+ TaJu + dirty white unknown, like 

"Znlz/ZnTe" 
Unknowns + Tals + TaaSi/TaO 

Ta205 + Ta2Si/TaO + unk. + Nb3Te4-like pattern 

Zirconium 

• zrtassi? 
Equation; ZrS + 3Ta + 7/212 
Reactions; 
1. 425°C, 16d 

SOCC, 35d 

(pllnb7, p49nb7) 

Zrlj + TaJu + ? + simple unknown crystalline phase 
(all crystals bad) 

Zrit + Ta^Iu 
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